Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import cv2 | |
import kiui | |
import trimesh | |
import torch | |
import rembg | |
from datetime import datetime | |
import subprocess | |
import gradio as gr | |
try: | |
# running on Hugging Face Spaces | |
import spaces | |
except ImportError: | |
# running locally, use a dummy space | |
class spaces: | |
class GPU: | |
def __init__(self, duration=60): | |
self.duration = duration | |
def __call__(self, func): | |
return func | |
from flow.model import Model | |
from flow.configs.schema import ModelConfig | |
from flow.utils import get_random_color, recenter_foreground | |
from vae.utils import postprocess_mesh | |
# download checkpoints | |
from huggingface_hub import hf_hub_download | |
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt") | |
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt") | |
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) | |
MAX_SEED = np.iinfo(np.int32).max | |
bg_remover = rembg.new_session() | |
# model config | |
model_config = ModelConfig( | |
vae_conf="vae.configs.part_woenc", | |
vae_ckpt_path=vae_ckpt_path, | |
qknorm=True, | |
qknorm_type="RMSNorm", | |
use_pos_embed=False, | |
dino_model="dinov2_vitg14", | |
hidden_dim=1536, | |
flow_shift=3.0, | |
logitnorm_mean=1.0, | |
logitnorm_std=1.0, | |
latent_size=4096, | |
use_parts=True, | |
) | |
# instantiate model | |
model = Model(model_config).eval().cuda().bfloat16() | |
# load weight | |
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True) | |
model.load_state_dict(ckpt_dict, strict=True) | |
# process function | |
def process(input_image, input_num_steps=30, input_cfg_scale=7.5, grid_res=384, seed=42, randomize_seed=True): | |
# seed | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
kiui.seed_everything(seed) | |
# output path | |
os.makedirs("output", exist_ok=True) | |
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb" | |
# input image | |
input_image = np.array(input_image) # uint8 | |
# bg removal if there is no alpha channel | |
if input_image.shape[-1] == 3: | |
input_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4] | |
mask = input_image[..., -1] > 0 | |
image = recenter_foreground(input_image, mask, border_ratio=0.1) | |
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_LINEAR) | |
image = image.astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background | |
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda() | |
data = {"cond_images": image_tensor} | |
with torch.inference_mode(): | |
results = model(data, num_steps=input_num_steps, cfg_scale=input_cfg_scale) | |
latent = results["latent"] | |
# query mesh | |
data_part0 = {"latent": latent[:, : model.config.latent_size, :]} | |
data_part1 = {"latent": latent[:, model.config.latent_size :, :]} | |
with torch.inference_mode(): | |
results_part0 = model.vae(data_part0, resolution=grid_res) | |
results_part1 = model.vae(data_part1, resolution=grid_res) | |
vertices, faces = results_part0["meshes"][0] | |
mesh_part0 = trimesh.Trimesh(vertices, faces) | |
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part0 = postprocess_mesh(mesh_part0, 5e4) | |
parts = mesh_part0.split(only_watertight=False) | |
vertices, faces = results_part1["meshes"][0] | |
mesh_part1 = trimesh.Trimesh(vertices, faces) | |
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part1 = postprocess_mesh(mesh_part1, 5e4) | |
parts.extend(mesh_part1.split(only_watertight=False)) | |
# split connected components and assign different colors | |
for j, part in enumerate(parts): | |
# each component uses a random color | |
part.visual.vertex_colors = get_random_color(j, use_float=True) | |
mesh = trimesh.Scene(parts) | |
# export the whole mesh | |
mesh.export(output_glb_path) | |
return seed, image, output_glb_path | |
# gradio UI | |
_TITLE = '''PartPacker: Efficient Part-level 3D Object Generation via Dual Volume Packing''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://research.nvidia.com/labs/dir/partpacker/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://github.com/NVlabs/PartPacker"><img src='https://img.shields.io/github/stars/NVlabs/PartPacker?style=social'/></a> | |
</div> | |
* Each part is visualized with a random color, and can be separated in the GLB file. | |
* If the output is not satisfactory, please try different random seeds! | |
''' | |
block = gr.Blocks(title=_TITLE).queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# input image | |
input_image = gr.Image(label="Image", type='pil') | |
# inference steps | |
input_num_steps = gr.Slider(label="Inference steps", minimum=1, maximum=100, step=1, value=30) | |
# cfg scale | |
input_cfg_scale = gr.Slider(label="CFG scale", minimum=2, maximum=10, step=0.1, value=7.5) | |
# grid resolution | |
input_grid_res = gr.Slider(label="Grid resolution", minimum=256, maximum=512, step=1, value=384) | |
# random seed | |
seed = gr.Slider(label="Random seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# gen button | |
button_gen = gr.Button("Generate") | |
with gr.Column(scale=4): | |
with gr.Tab("3D Model"): | |
# glb file | |
output_model = gr.Model3D(label="Geometry", height=380) | |
with gr.Tab("Input Image"): | |
# background removed image | |
output_image = gr.Image(interactive=False, show_label=False) | |
with gr.Column(scale=1): | |
gr.Examples( | |
examples=[ | |
["examples/barrel.png"], | |
["examples/cactus.png"], | |
["examples/cyan_car.png"], | |
["examples/pickup.png"], | |
["examples/swivelchair.png"], | |
["examples/warhammer.png"], | |
], | |
inputs=[input_image], | |
cache_examples=False, | |
) | |
button_gen.click(process, inputs=[input_image, input_num_steps, input_cfg_scale, input_grid_res, seed, randomize_seed], outputs=[seed, output_image, output_model]) | |
block.launch() |