Spaces:
Running
on
Zero
Running
on
Zero
""" | |
----------------------------------------------------------------------------- | |
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | |
NVIDIA CORPORATION and its licensors retain all intellectual property | |
and proprietary rights in and to this software, related documentation | |
and any modifications thereto. Any use, reproduction, disclosure or | |
distribution of this software and related documentation without an express | |
license agreement from NVIDIA CORPORATION is strictly prohibited. | |
----------------------------------------------------------------------------- | |
""" | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint | |
from vae.modules.attention import CrossAttention, SelfAttention | |
class FeedForward(nn.Module): | |
def __init__(self, dim, mult=4): | |
super().__init__() | |
self.net = nn.Sequential(nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim)) | |
def forward(self, x): | |
return self.net(x) | |
# Adapted from https://github.com/facebookresearch/DiT/blob/main/models.py#L27 | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
Args: | |
t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
dim: the dimension of the output. | |
max_period: controls the minimum frequency of the embeddings. | |
Returns: | |
an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp(-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
device=t.device | |
) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
dtype = next(self.mlp.parameters()).dtype # need to determine on the fly... | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_freq = t_freq.to(dtype=dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class DiTLayer(nn.Module): | |
def __init__(self, dim, num_heads, qknorm=False, gradient_checkpointing=True, qknorm_type="LayerNorm"): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.gradient_checkpointing = gradient_checkpointing | |
self.norm1 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
self.attn1 = SelfAttention(dim, num_heads, qknorm=qknorm, qknorm_type=qknorm_type) | |
self.norm2 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
self.attn2 = CrossAttention(dim, num_heads, context_dim=dim, qknorm=qknorm, qknorm_type=qknorm_type) | |
self.norm3 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
self.ff = FeedForward(dim) | |
self.adaln_linear = nn.Linear(dim, dim * 6, bias=True) | |
def forward(self, x, c, t_emb): | |
if self.training and self.gradient_checkpointing: | |
return checkpoint(self._forward, x, c, t_emb, use_reentrant=False) | |
else: | |
return self._forward(x, c, t_emb) | |
def _forward(self, x, c, t_emb): | |
# x: [B, N, C], hidden states | |
# c: [B, M, C], condition (assume normed and projected to C) | |
# t_emb: [B, C], timestep embedding of adaln | |
# return: [B, N, C], updated hidden states | |
B, N, C = x.shape | |
t_adaln = self.adaln_linear(F.silu(t_emb)).view(B, 6, -1) # [B, 6, C] | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = t_adaln.chunk(6, dim=1) | |
h = self.norm1(x) | |
h = h * (1 + scale_msa) + shift_msa | |
x = x + gate_msa * self.attn1(h) | |
h = self.norm2(x) | |
x = x + self.attn2(h, c) | |
h = self.norm3(x) | |
h = h * (1 + scale_mlp) + shift_mlp | |
x = x + gate_mlp * self.ff(h) | |
return x | |
class DiT(nn.Module): | |
def __init__( | |
self, | |
hidden_dim=1024, | |
num_heads=16, | |
latent_size=2048, | |
latent_dim=8, | |
num_layers=24, | |
qknorm=False, | |
gradient_checkpointing=True, | |
qknorm_type="LayerNorm", | |
use_pos_embed=False, | |
use_parts=False, | |
part_embed_mode="part2_only", | |
): | |
super().__init__() | |
# project in | |
self.proj_in = nn.Linear(latent_dim, hidden_dim) | |
# positional encoding (just use a learnable positional encoding) | |
self.use_pos_embed = use_pos_embed | |
if self.use_pos_embed: | |
self.pos_embed = nn.Parameter(torch.randn(1, latent_size, hidden_dim) / hidden_dim**0.5) | |
# part encoding (a must to distinguish parts!) | |
self.use_parts = use_parts | |
self.part_embed_mode = part_embed_mode | |
if self.use_parts: | |
if self.part_embed_mode == "element": | |
self.part_embed = nn.Parameter(torch.randn(latent_size, hidden_dim) / hidden_dim**0.5) | |
elif self.part_embed_mode == "part": | |
self.part_embed = nn.Parameter(torch.randn(2, hidden_dim)) | |
elif self.part_embed_mode == "part2_only": | |
# we only add this to the second part to distinguish from the first part | |
self.part_embed = nn.Parameter(torch.randn(1, hidden_dim) / hidden_dim**0.5) | |
# timestep encoding | |
self.timestep_embed = TimestepEmbedder(hidden_dim) | |
# transformer layers | |
self.layers = nn.ModuleList( | |
[DiTLayer(hidden_dim, num_heads, qknorm, gradient_checkpointing, qknorm_type) for _ in range(num_layers)] | |
) | |
# project out | |
self.norm_out = nn.LayerNorm(hidden_dim, eps=1e-6, elementwise_affine=False) | |
self.proj_out = nn.Linear(hidden_dim, latent_dim) | |
# init | |
self.init_weight() | |
def init_weight(self): | |
# Initialize transformer layers | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.timestep_embed.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.timestep_embed.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for layer in self.layers: | |
nn.init.constant_(layer.adaln_linear.weight, 0) | |
nn.init.constant_(layer.adaln_linear.bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.proj_out.weight, 0) | |
nn.init.constant_(self.proj_out.bias, 0) | |
def forward(self, x, c, t): | |
# x: [B, N, C], hidden states | |
# c: [B, M, C], condition (assume normed and projected to C) | |
# t: [B,], timestep | |
# return: [B, N, C], updated hidden states | |
B, N, C = x.shape | |
# project in | |
x = self.proj_in(x) | |
# positional encoding | |
if self.use_pos_embed: | |
x = x + self.pos_embed | |
# part encoding | |
if self.use_parts: | |
if self.part_embed_mode == "element": | |
x += self.part_embed | |
elif self.part_embed_mode == "part": | |
x[:, : x.shape[1] // 2, :] += self.part_embed[0] | |
x[:, x.shape[1] // 2 :, :] += self.part_embed[1] | |
elif self.part_embed_mode == "part2_only": | |
x[:, x.shape[1] // 2 :, :] += self.part_embed[0] | |
# timestep encoding | |
t_emb = self.timestep_embed(t) # [B, C] | |
# transformer layers | |
for layer in self.layers: | |
x = layer(x, c, t_emb) | |
# project out | |
x = self.norm_out(x) | |
x = self.proj_out(x) | |
return x | |