""" ----------------------------------------------------------------------------- Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited. ----------------------------------------------------------------------------- """ import os from functools import wraps from typing import Literal import numpy as np import torch import trimesh from kiui.mesh_utils import clean_mesh, decimate_mesh # Adapted from https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/utils.py#L38 class sync_timer: """ Synchronized timer to count the inference time of `nn.Module.forward` or else. set env var TIMER=1 to enable logging! Example as context manager: ```python with timer('name'): run() ``` Example as decorator: ```python @timer('name') def run(): pass ``` """ def __init__(self, name=None, flag_env="TIMER"): self.name = name self.flag_env = flag_env def __enter__(self): if os.environ.get(self.flag_env, "0") == "1": self.start = torch.cuda.Event(enable_timing=True) self.end = torch.cuda.Event(enable_timing=True) self.start.record() return lambda: self.time def __exit__(self, exc_type, exc_value, exc_tb): if os.environ.get(self.flag_env, "0") == "1": self.end.record() torch.cuda.synchronize() self.time = self.start.elapsed_time(self.end) if self.name is not None: print(f"{self.name} takes {self.time} ms") def __call__(self, func): @wraps(func) def wrapper(*args, **kwargs): with self: result = func(*args, **kwargs) return result return wrapper @torch.no_grad() def calculate_iou(pred: torch.Tensor, gt: torch.Tensor, target_value: int, thresh: float = 0) -> torch.Tensor: """Calculate the Intersection over Union (IoU) between two volumes. Args: pred (torch.Tensor): [*] continuous value between 0 and 1 gt (torch.Tensor): [*] discrete value of 0 or 1 target_value (int): The value to be considered as the target class Returns: torch.Tensor: IoU value """ # Ensure volumes have the same shape assert pred.shape == gt.shape, "Volumes must have the same shape" # binarize pred_binary = pred > thresh gt = gt > thresh # Convert the volumes to boolean tensors for logical operations intersection = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float() union = torch.logical_or(pred_binary == target_value, gt == target_value).sum().float() # Compute IoU iou = intersection / union if union != 0 else torch.tensor(0.0) return iou @torch.no_grad() def calculate_metrics( pred: torch.Tensor, gt: torch.Tensor, target_value: int = 1, thresh: float = 0.5 ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Calculate Precision, Recall, and F1 between two volumes. Args: pred (torch.Tensor): [*] continuous value between 0 and 1 gt (torch.Tensor): [*] discrete value of 0 or 1 target_value (int): The value to be considered as the target class Returns: tuple: Precision, Recall, F1 values """ assert pred.shape == gt.shape, f"Pred {pred.shape} and gt {gt.shape} must have the same shape" # Binarize prediction pred_binary = pred > thresh gt = gt > thresh # True Positive (TP): pred == target_value and gt == target_value true_positive = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float() # False Positive (FP): pred == target_value and gt != target_value false_positive = torch.logical_and(pred_binary == target_value, gt != target_value).sum().float() # False Negative (FN): pred != target_value and gt == target_value false_negative = torch.logical_and(pred_binary != target_value, gt == target_value).sum().float() # Precision: TP / (TP + FP), best to detect False Positives precision = ( true_positive / (true_positive + false_positive) if (true_positive + false_positive) != 0 else torch.tensor(0.0) ) # Recall: TP / (TP + FN), best to detect False Negatives recall = ( true_positive / (true_positive + false_negative) if (true_positive + false_negative) != 0 else torch.tensor(0.0) ) # f1: 2 / (1 / precision + 1 / recall) f1 = 2 / (1 / precision + 1 / recall) if (precision != 0 and recall != 0) else torch.tensor(0.0) return precision, recall, f1 # Adapted from https://github.com/Stability-AI/stablediffusion/blob/main/ldm/modules/distributions/distributions.py#L24 class DiagonalGaussianDistribution: """VAE latent""" def __init__(self, mean, logvar, deterministic=False): # mean, logvar: [B, L, D] x 2 self.mean, self.logvar = mean, logvar self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean, device=self.mean.device, dtype=self.mean.dtype) def sample(self, weight: float = 1.0): sample = weight * torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype) x = self.mean + self.std * sample return x def kl(self, other=None, dims=[1, 2]): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.mean(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims) else: return 0.5 * torch.mean( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=dims, ) def nll(self, sample, dims=[1, 2]): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.mean(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean class DummyLatent: def __init__(self, mean): self.mean = mean def sample(self, weight=0): # simply perturb the mean if weight > 0: noise = torch.randn_like(self.mean) * weight else: noise = 0 return self.mean + noise def mode(self): return self.mean def kl(self): # just an l2 penalty return 0.5 * torch.mean(torch.pow(self.mean, 2)) def construct_grid_points( resolution: int, indexing: str = "ij", ): """Generate dense grid points in [-1, 1]^3. Args: resolution (int): resolution of the grid indexing (str, optional): indexing of the grid. Defaults to "ij". Returns: torch.Tensor: grid points (resolution + 1, resolution + 1, resolution + 1, 3), inside bbox. """ x = np.linspace(-1, 1, resolution + 1, dtype=np.float32) y = np.linspace(-1, 1, resolution + 1, dtype=np.float32) z = np.linspace(-1, 1, resolution + 1, dtype=np.float32) [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) xyzs = np.stack((xs, ys, zs), axis=-1) xyzs = torch.from_numpy(xyzs).float() return xyzs _diso_session = None # lazy session for reuse @sync_timer("extract_mesh") def extract_mesh( grid_vals: torch.Tensor, resolution: int, isosurface_level: float = 0, backend: Literal["mcubes", "diso"] = "mcubes", ): """Extract mesh from grid occupancy. Args: grid_vals (torch.Tensor): [resolution + 1, resolution + 1, resolution + 1], assume to be TSDF in [-1, 1] (inner is positive) resolution (int, optional): Grid resolution. isosurface_level (float, optional): Iso-surface level. Defaults to 0. backend (Literal["mcubes", "diso"], optional): Backend for mesh extraction. Defaults to "diso", which uses GPU and is faster. Returns: vertices (np.ndarray): [N, 3], float32, in [-1, 1] faces (np.ndarray): [M, 3], int32 """ grid_vals = grid_vals.view(resolution + 1, resolution + 1, resolution + 1) if backend == "mcubes": try: import mcubes except ImportError: os.system("pip install pymcubes") import mcubes grid_vals = grid_vals.float().cpu().numpy() verts, faces = mcubes.marching_cubes(grid_vals, isosurface_level) verts = 2 * verts / resolution - 1.0 # normalize to [-1, 1] elif backend == "diso": try: import diso except ImportError: os.system("pip install diso") import diso global _diso_session if _diso_session is None: _diso_session = diso.DiffDMC(dtype=torch.float32).cuda() grid_vals = -grid_vals.float().cuda() # diso assumes inner is NEGATIVE! verts, faces = _diso_session(grid_vals, deform=None, normalize=True) # verts in [0, 1] verts = verts.cpu().numpy() * 2 - 1.0 # normalize to [-1, 1] faces = faces.cpu().numpy() return verts, faces @sync_timer("postprocess_mesh") def postprocess_mesh(mesh: trimesh.Trimesh, decimate_target=100000): vertices = mesh.vertices triangles = mesh.faces if vertices.shape[0] > 0 and triangles.shape[0] > 0: vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5) if decimate_target > 0 and triangles.shape[0] > decimate_target: vertices, triangles = decimate_mesh(vertices, triangles, decimate_target, optimalplacement=False) if vertices.shape[0] > 0 and triangles.shape[0] > 0: vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5) mesh.vertices = vertices mesh.faces = triangles return mesh def sphere_normalize(vertices): bmin = vertices.min(axis=0) bmax = vertices.max(axis=0) bcenter = (bmax + bmin) / 2 radius = np.linalg.norm(vertices - bcenter, axis=-1).max() vertices = (vertices - bcenter) / radius # to [-1, 1] return vertices def box_normalize(vertices, bound=0.95): bmin = vertices.min(axis=0) bmax = vertices.max(axis=0) bcenter = (bmax + bmin) / 2 vertices = bound * (vertices - bcenter) / (bmax - bmin).max() return vertices