polish the demo
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -124,6 +125,14 @@ class RewardModel:
|
|
124 |
reward_model = RewardModel(device, tokenizer, torch_dtype=torch.float16)
|
125 |
print("Models loaded successfully!")
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
# Helper functions from Plan2Align
|
128 |
def rm_predict_preference(source, translation0, translation1, language="English"):
|
129 |
translations = [translation0, translation1]
|
@@ -202,7 +211,7 @@ def translate_chinese_to_english(chinese_text, target_language="English"):
|
|
202 |
"best_index": best_index
|
203 |
}
|
204 |
|
205 |
-
# Updated
|
206 |
def process_text(text, target_language="English"):
|
207 |
if not text.strip():
|
208 |
return "Please enter some text to translate.", "", "", "", ""
|
@@ -218,6 +227,9 @@ def process_text(text, target_language="English"):
|
|
218 |
|
219 |
candidates_text = "\n".join(candidates)
|
220 |
|
|
|
|
|
|
|
221 |
return (
|
222 |
result["best_translation"],
|
223 |
f"{result['best_reward']:.4f}",
|
@@ -226,6 +238,8 @@ def process_text(text, target_language="English"):
|
|
226 |
"Yes" if result["best_reward"] >= THRESHOLD else "No"
|
227 |
)
|
228 |
except Exception as e:
|
|
|
|
|
229 |
return f"Error: {str(e)}", "", "", "", ""
|
230 |
|
231 |
# Define available target languages - only the supported ones
|
@@ -234,9 +248,8 @@ target_languages = [
|
|
234 |
]
|
235 |
|
236 |
# Create an enhanced Gradio interface
|
237 |
-
with gr.Blocks(title="
|
238 |
-
gr.Markdown("
|
239 |
-
gr.Markdown("This demo uses the Plan2Align approach to translate Chinese text to your chosen language, showing how the reward model evaluates different translation candidates.")
|
240 |
|
241 |
with gr.Row():
|
242 |
with gr.Column(scale=1):
|
@@ -251,6 +264,7 @@ with gr.Blocks(title="Chinese Translation with Plan2Align") as demo:
|
|
251 |
label="Target Language"
|
252 |
)
|
253 |
translate_button = gr.Button("Translate")
|
|
|
254 |
|
255 |
with gr.Column(scale=2):
|
256 |
with gr.Tab("Best Translation"):
|
@@ -278,6 +292,12 @@ with gr.Blocks(title="Chinese Translation with Plan2Align") as demo:
|
|
278 |
lines=15,
|
279 |
interactive=False
|
280 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
# Set up the translation flow
|
283 |
translate_button.click(
|
@@ -286,7 +306,14 @@ with gr.Blocks(title="Chinese Translation with Plan2Align") as demo:
|
|
286 |
outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold]
|
287 |
)
|
288 |
|
289 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
gr.Examples(
|
291 |
examples=[
|
292 |
["夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "English"],
|
|
|
1 |
import os
|
2 |
+
import gc
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
125 |
reward_model = RewardModel(device, tokenizer, torch_dtype=torch.float16)
|
126 |
print("Models loaded successfully!")
|
127 |
|
128 |
+
# Memory management function
|
129 |
+
def clear_cache():
|
130 |
+
"""Clear CUDA cache and run garbage collection to free memory"""
|
131 |
+
if torch.cuda.is_available():
|
132 |
+
torch.cuda.empty_cache()
|
133 |
+
gc.collect()
|
134 |
+
return "Cache cleared"
|
135 |
+
|
136 |
# Helper functions from Plan2Align
|
137 |
def rm_predict_preference(source, translation0, translation1, language="English"):
|
138 |
translations = [translation0, translation1]
|
|
|
211 |
"best_index": best_index
|
212 |
}
|
213 |
|
214 |
+
# Updated process_text function with cache clearing
|
215 |
def process_text(text, target_language="English"):
|
216 |
if not text.strip():
|
217 |
return "Please enter some text to translate.", "", "", "", ""
|
|
|
227 |
|
228 |
candidates_text = "\n".join(candidates)
|
229 |
|
230 |
+
# Clear cache after processing
|
231 |
+
clear_cache()
|
232 |
+
|
233 |
return (
|
234 |
result["best_translation"],
|
235 |
f"{result['best_reward']:.4f}",
|
|
|
238 |
"Yes" if result["best_reward"] >= THRESHOLD else "No"
|
239 |
)
|
240 |
except Exception as e:
|
241 |
+
# Clear cache even if there's an error
|
242 |
+
clear_cache()
|
243 |
return f"Error: {str(e)}", "", "", "", ""
|
244 |
|
245 |
# Define available target languages - only the supported ones
|
|
|
248 |
]
|
249 |
|
250 |
# Create an enhanced Gradio interface
|
251 |
+
with gr.Blocks(title="Test-Time Machine Translation with Plan2Align")
|
252 |
+
gr.Markdown("This demo uses the Plan2Align approach to translate Chinese text to your chosen language, showing how the reward model evaluates different translation candidates. Paper: https://arxiv.org/pdf/2502.20795.")
|
|
|
253 |
|
254 |
with gr.Row():
|
255 |
with gr.Column(scale=1):
|
|
|
264 |
label="Target Language"
|
265 |
)
|
266 |
translate_button = gr.Button("Translate")
|
267 |
+
clear_button = gr.Button("Clear Memory Cache")
|
268 |
|
269 |
with gr.Column(scale=2):
|
270 |
with gr.Tab("Best Translation"):
|
|
|
292 |
lines=15,
|
293 |
interactive=False
|
294 |
)
|
295 |
+
|
296 |
+
cache_status = gr.Textbox(
|
297 |
+
label="Cache Status",
|
298 |
+
value="Ready",
|
299 |
+
interactive=False
|
300 |
+
)
|
301 |
|
302 |
# Set up the translation flow
|
303 |
translate_button.click(
|
|
|
306 |
outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold]
|
307 |
)
|
308 |
|
309 |
+
# Add manual cache clearing button
|
310 |
+
clear_button.click(
|
311 |
+
fn=clear_cache,
|
312 |
+
inputs=[],
|
313 |
+
outputs=[cache_status]
|
314 |
+
)
|
315 |
+
|
316 |
+
# Examples with more complex sentences in Traditional Chinese about Taiwan
|
317 |
gr.Examples(
|
318 |
examples=[
|
319 |
["夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "English"],
|