import warnings warnings.filterwarnings("ignore") import random import torchaudio # from torch._six import string_classes import collections import re import numpy as np from transformers import AutoTokenizer, logging try: from models.clap import CLAP from models.mapper import get_clapcap except: from .models.clap import CLAP from .models.mapper import get_clapcap import math import torchaudio.transforms as T import os import torch from importlib_resources import files import argparse import yaml import sys logging.set_verbosity_error() class CLAPWrapper(): """ A class for interfacing CLAP model. """ def __init__(self, model_fp, config_root, version, use_cuda=False): self.supported_versions = ['2022', '2023', 'clapcap'] self.np_str_obj_array_pattern = re.compile(r'[SaUO]') self.file_path = os.path.realpath(__file__) self.default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") self.config_root = config_root self.config_as_str = self.get_config_path(version) self.model_fp = model_fp self.use_cuda = use_cuda self.version = version if 'clapcap' in self.version: self.clapcap, self.tokenizer, self.args = self.load_clapcap() else: self.clap, self.tokenizer, self.args = self.load_clap() def get_config_path(self, version): if version in self.supported_versions: # config_root = /home/zkong/audio_flamingo/audio_flamingo_v1/microsoft_clap/src/configs return f"{self.config_root}/config_{version}.yml" else: raise ValueError(f"The specific version is not supported. The supported versions are {str(self.supported_versions)}") def read_config_as_args(self,config_path,args=None,is_config_str=False): return_dict = {} if config_path is not None: if is_config_str: yml_config = yaml.load(config_path, Loader=yaml.FullLoader) else: with open(config_path, "r") as f: yml_config = yaml.load(f, Loader=yaml.FullLoader) if args != None: for k, v in yml_config.items(): if k in args.__dict__: args.__dict__[k] = v else: sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k)) else: for k, v in yml_config.items(): return_dict[k] = v args = args if args != None else return_dict return argparse.Namespace(**args) def load_clap(self): r"""Load CLAP model with args from config file""" args = self.read_config_as_args(self.config_as_str, is_config_str=False) if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model: self.token_keys = ['input_ids', 'attention_mask'] elif 'bert' in args.text_model: self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask'] clap = CLAP( audioenc_name=args.audioenc_name, sample_rate=args.sampling_rate, window_size=args.window_size, hop_size=args.hop_size, mel_bins=args.mel_bins, fmin=args.fmin, fmax=args.fmax, classes_num=args.num_classes, out_emb=args.out_emb, text_model=args.text_model, transformer_embed_dim=args.transformer_embed_dim, d_proj=args.d_proj ) # Load pretrained weights for model model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model'] # We unwrap the DDP model and save. If the model is not unwrapped and saved, then the model needs to unwrapped before `load_state_dict`: # Reference link: https://discuss.pytorch.org/t/how-to-load-dataparallel-model-which-trained-using-multiple-gpus/146005 clap.load_state_dict(model_state_dict) clap.eval() # set clap in eval mode tokenizer = AutoTokenizer.from_pretrained(args.text_model) if 'gpt' in args.text_model: tokenizer.add_special_tokens({'pad_token': '!'}) if self.use_cuda and torch.cuda.is_available(): clap = clap.cuda() return clap, tokenizer, args def load_clapcap(self): r"""Load CLAP model with args from config file""" args = self.read_config_as_args(self.config_as_str, is_config_str=False) args.prefix_dim = args.d_proj text_model = args.text_model args.text_model = args.text_decoder args.cross_attention = True if 'cross' in args.clapcap_model.lower() else False if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model: self.token_keys = ['input_ids', 'attention_mask'] elif 'bert' in args.text_model: self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask'] clap = CLAP( audioenc_name=args.audioenc_name, sample_rate=args.sampling_rate, window_size=args.window_size, hop_size=args.hop_size, mel_bins=args.mel_bins, fmin=args.fmin, fmax=args.fmax, classes_num=args.num_classes, out_emb=args.out_emb, text_model=text_model, transformer_embed_dim=args.transformer_embed_dim, d_proj=args.d_proj ) clapcap = get_clapcap(args.clapcap_model)(clap, args.text_decoder, args.prefix_length, args.prefix_length_clip, args.prefix_dim, args.num_layers, args.normalize_prefix, args.mapping_type, True, True) model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model'] clapcap.load_state_dict(model_state_dict) clapcap.eval() # set clap in eval mode tokenizer = AutoTokenizer.from_pretrained(args.text_model) if 'gpt' in args.text_model: tokenizer.add_special_tokens({'pad_token': '!'}) if self.use_cuda and torch.cuda.is_available(): clapcap = clapcap.cuda() return clapcap, tokenizer, args def default_collate(self, batch): r"""Puts each data field into a tensor with outer dimension batch size""" elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError( self.default_collate_err_msg_format.format(elem.dtype)) return self.default_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(elem, int): return torch.tensor(batch) # elif isinstance(elem, string_classes): # return batch elif isinstance(elem, collections.abc.Mapping): return {key: self.default_collate([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(self.default_collate(samples) for samples in zip(*batch))) elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError( 'each element in list of batch should be of equal size') transposed = zip(*batch) return [self.default_collate(samples) for samples in transposed] raise TypeError(self.default_collate_err_msg_format.format(elem_type)) def read_audio(self, audio_path, resample=False): r"""Loads audio file or array and returns a torch tensor""" # Randomly sample a segment of audio_duration from the clip or pad to match duration audio_time_series, sample_rate = torchaudio.load(audio_path) resample_rate = self.args.sampling_rate if resample: resampler = T.Resample(sample_rate, resample_rate) audio_time_series = resampler(audio_time_series) return audio_time_series, sample_rate def load_audio_into_tensor(self, audio_path, audio_duration, resample=False): r"""Loads audio file and returns raw audio.""" # Randomly sample a segment of audio_duration from the clip or pad to match duration audio_time_series, sample_rate = self.read_audio(audio_path, resample=False) audio_time_series = audio_time_series.reshape(-1) # audio_time_series is shorter than predefined audio duration, # so audio_time_series is extended if audio_duration*sample_rate >= audio_time_series.shape[0]: repeat_factor = int(np.ceil((audio_duration*sample_rate) / audio_time_series.shape[0])) # Repeat audio_time_series by repeat_factor to match audio_duration audio_time_series = audio_time_series.repeat(repeat_factor) # remove excess part of audio_time_series audio_time_series = audio_time_series[0:audio_duration*sample_rate] else: # audio_time_series is longer than predefined audio duration, # so audio_time_series is trimmed start_index = random.randrange( audio_time_series.shape[0] - audio_duration*sample_rate) audio_time_series = audio_time_series[start_index:start_index + audio_duration*sample_rate] return torch.FloatTensor(audio_time_series) # modified by Kong def load_audio_clip_into_tensor(self, audio_clip, audio_duration, resample=False): r"""Loads audio clip and returns raw audio.""" # Randomly sample a segment of audio_duration from the clip or pad to match duration sample_rate = 44100 audio_time_series = audio_clip.reshape(-1) # audio_time_series is shorter than predefined audio duration, # so audio_time_series is extended assert audio_duration * sample_rate >= audio_time_series.shape[0], \ 'dur * sr = {} should be larger than len = {}'.format(audio_duration * sample_rate, audio_time_series.shape[0]) repeat_factor = int(np.ceil((audio_duration*sample_rate) / audio_time_series.shape[0])) # Repeat audio_time_series by repeat_factor to match audio_duration audio_time_series = audio_time_series.repeat(repeat_factor) # remove excess part of audio_time_series audio_time_series = audio_time_series[0:audio_duration*sample_rate] # return torch.FloatTensor(audio_time_series) return audio_time_series # already on cuda device def preprocess_audio(self, audio_files, resample): r"""Load list of audio files and return raw audio""" audio_tensors = [] for audio_file in audio_files: audio_tensor = self.load_audio_into_tensor( audio_file, self.args.duration, resample) audio_tensor = audio_tensor.reshape( 1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1) audio_tensors.append(audio_tensor) return self.default_collate(audio_tensors) # modified by Kong def preprocess_audio_clips(self, audio_clips, resample=False): r"""Load list of audio clips and return raw audio""" audio_tensors = [] for audio_clip in audio_clips: audio_tensor = self.load_audio_clip_into_tensor( audio_clip, self.args.duration, resample=False) audio_tensor = audio_tensor.reshape( 1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1) audio_tensors.append(audio_tensor) return self.default_collate(audio_tensors) def preprocess_text(self, text_queries): r"""Load list of class labels and return tokenized text""" tokenized_texts = [] for ttext in text_queries: if 'gpt' in self.args.text_model: ttext = ttext + ' <|endoftext|>' tok = self.tokenizer.encode_plus( text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding='max_length', return_tensors="pt") for key in self.token_keys: tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1) tokenized_texts.append(tok) return self.default_collate(tokenized_texts) def get_text_embeddings(self, class_labels): r"""Load list of class labels and return text embeddings""" preprocessed_text = self.preprocess_text(class_labels) return self._get_text_embeddings(preprocessed_text) def get_audio_embeddings(self, audio_files, resample): r"""Load list of audio files and return a audio embeddings""" preprocessed_audio = self.preprocess_audio(audio_files, resample) return self._get_audio_embeddings(preprocessed_audio) # modified by Kong def get_audio_embeddings_from_clips(self, audio_clips, resample=False): r"""Load list of audio files and return a audio embeddings""" preprocessed_audio = self.preprocess_audio_clips(audio_clips, resample) return self._get_audio_embeddings(preprocessed_audio) def _get_text_embeddings(self, preprocessed_text): r"""Load preprocessed text and return text embeddings""" with torch.no_grad(): return self.clap.caption_encoder(preprocessed_text) # modified by Kong def _get_audio_embeddings(self, preprocessed_audio): r"""Load preprocessed audio and return a audio embeddings""" with torch.no_grad(): preprocessed_audio = preprocessed_audio.reshape( preprocessed_audio.shape[0], preprocessed_audio.shape[2]) #Append [0] the audio emebdding, [1] has output class probabilities if 'clapcap' in self.version: return self.clapcap.clap(preprocessed_audio)[0] else: return self.clap.audio_encoder(preprocessed_audio)[0] def _generic_batch_inference(self, func, *args): r"""Process audio and/or text per batch""" input_tmp = args[0] batch_size = args[-1] # args[0] has audio_files, args[1] has class_labels inputs = [args[0], args[1]] if len(args) == 3 else [args[0]] args0_len = len(args[0]) # compute text_embeddings once for all the audio_files batches if len(inputs) == 2: text_embeddings = self.get_text_embeddings(args[1]) inputs = [args[0], args[1], text_embeddings] dataset_idx = 0 for _ in range(math.ceil(args0_len/batch_size)): next_batch_idx = dataset_idx + batch_size # batch size is bigger than available audio/text items if next_batch_idx >= args0_len: inputs[0] = input_tmp[dataset_idx:] return func(*tuple(inputs)) else: inputs[0] = input_tmp[dataset_idx:next_batch_idx] yield func(*tuple(inputs)) dataset_idx = next_batch_idx def get_audio_embeddings_per_batch(self, audio_files, batch_size): r"""Load preprocessed audio and return a audio embeddings per batch""" return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size) def get_text_embeddings_per_batch(self, class_labels, batch_size): r"""Load preprocessed text and return text embeddings per batch""" return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size) def compute_similarity(self, audio_embeddings, text_embeddings): r"""Compute similarity between text and audio embeddings""" audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True) text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True) logit_scale = self.clap.logit_scale.exp() similarity = logit_scale*text_embeddings @ audio_embeddings.T return similarity.T def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size): r"""Compute classification probabilities for each audio recording in a batch and each class label""" return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size) def generate_caption(self, audio_files, resample=True, beam_size: int = 5, entry_length=67, temperature=1.): r"""Generate audio captions for each audio recording in a batch""" captions = [] audio_tensors = self.preprocess_audio(audio_files, resample) with torch.no_grad(): prefix = self.clapcap.clap(audio_tensors.squeeze(1))[0] if self.args.normalize_prefix: prefix = prefix / prefix.norm(2, -1).reshape(-1,1) prefix_embed = self.clapcap.clap_project(prefix).view(-1, self.args.prefix_length, self.clapcap.gpt.transformer.wte.weight.shape[1]) for i in range(len(audio_tensors)): gen_caption = self._generate_beam(embed=prefix_embed[i].unsqueeze(0),\ beam_size=beam_size,\ entry_length=entry_length,\ temperature=temperature)[0] captions.append(gen_caption.capitalize()) return captions def _generate_beam(self, beam_size: int = 5, prompt=None, embed=None, entry_length=67, temperature=1., stop_token: str = ' <|endoftext|>'): r"""Generate captions by beam search decoding""" self.clapcap.eval() stop_token_index = self.tokenizer.encode(stop_token)[0] tokens = None scores = None device = next(self.clapcap.parameters()).device seq_lengths = torch.ones(beam_size, device=device) is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) with torch.no_grad(): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(self.tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = self.clapcap.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = self.clapcap.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) logits = logits.softmax(-1).log() if scores is None: scores, next_tokens = logits.topk(beam_size, -1) generated = generated.expand(beam_size, *generated.shape[1:]) next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: tokens = next_tokens else: tokens = tokens.expand(beam_size, *tokens.shape[1:]) tokens = torch.cat((tokens, next_tokens), dim=1) else: logits[is_stopped] = -float(np.inf) logits[is_stopped, 0] = 0 scores_sum = scores[:, None] + logits seq_lengths[~is_stopped] += 1 scores_sum_average = scores_sum / seq_lengths[:, None] scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) next_tokens_source = next_tokens // scores_sum.shape[1] seq_lengths = seq_lengths[next_tokens_source] next_tokens = next_tokens % scores_sum.shape[1] next_tokens = next_tokens.unsqueeze(1) tokens = tokens[next_tokens_source] tokens = torch.cat((tokens, next_tokens), dim=1) generated = generated[next_tokens_source] scores = scores_sum_average * seq_lengths is_stopped = is_stopped[next_tokens_source] next_token_embed = self.clapcap.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) generated = torch.cat((generated, next_token_embed), dim=1) is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() if is_stopped.all(): break scores = scores / seq_lengths output_list = tokens.cpu().numpy() output_texts = [self.tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] order = scores.argsort(descending=True) output_texts = [output_texts[i] for i in order] return output_texts