File size: 10,821 Bytes
2cc0ccf 841615f 2cc0ccf 841615f 2cc0ccf 841615f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import gradio as gr
import numpy as np
from PIL import Image
import torch
import os
from pipeline_difix import DifixPipeline
from diffusers.utils import load_image
import gradio.themes as gr_themes
from pathlib import Path
import logging
import time
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(), # Console output
logging.FileHandler('/tmp/difix3d_app.log', mode='a') # File output
]
)
logger = logging.getLogger(__name__)
# Configuration
MODEL_NAME = "nvidia/difix"
DEFAULT_PROMPT = "remove degradation"
DEFAULT_HEIGHT = 576
DEFAULT_WIDTH = 1024
DEFAULT_TIMESTEP = 199
DEFAULT_GUIDANCE_SCALE = 0.0
DEFAULT_NUM_INFERENCE_STEPS = 1
# Global pipeline variable
pipe = None
logger.info("=== Difix Demo Starting ===")
logger.info(f"MODEL_NAME: {MODEL_NAME}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"CUDA Available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA Device: {torch.cuda.get_device_name()}")
logger.info(f"CUDA Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# Login to Hugging Face using environment variable
try:
from huggingface_hub import login
hf_token = os.getenv('HF_TOKEN')
# If not in environment, try reading from /etc/hf_env
if not hf_token and os.path.exists('/etc/hf_env'):
with open('/etc/hf_env', 'r') as f:
for line in f:
if line.strip().startswith('export HF_TOKEN='):
hf_token = line.strip().split('=', 1)[1]
break
elif line.strip().startswith('HF_TOKEN='):
hf_token = line.strip().split('=', 1)[1]
break
if hf_token:
login(hf_token)
logger.info("Successfully authenticated with Hugging Face")
else:
logger.warning("HF_TOKEN not found in environment or /etc/hf_env")
except Exception as e:
logger.error(f"Failed to authenticate with Hugging Face: {str(e)}")
def initialize_pipeline():
"""Initialize the Difix pipeline and perform warmup"""
global pipe
logger.info("Starting pipeline initialization...")
start_time = time.time()
try:
logger.info(f"Loading DifixPipeline from {MODEL_NAME}...")
# Initialize pipeline using the new approach
pipe = DifixPipeline.from_pretrained(MODEL_NAME, trust_remote_code=True)
logger.info("DifixPipeline loaded successfully")
logger.info("Moving pipeline to CUDA...")
if torch.cuda.is_available():
pipe.to("cuda")
logger.info("Pipeline moved to CUDA")
else:
logger.warning("CUDA not available, using CPU")
init_time = time.time() - start_time
logger.info(f"Pipeline initialization completed in {init_time:.2f} seconds")
# Warmup with dummy data
logger.info("Starting pipeline warmup...")
warmup_start = time.time()
try:
# Create dummy image with the model's expected resolution
dummy_image = Image.new('RGB', (DEFAULT_WIDTH, DEFAULT_HEIGHT), color='red')
logger.info(f"Created dummy image: {dummy_image.size}")
_ = pipe(
DEFAULT_PROMPT,
image=dummy_image,
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
timesteps=[DEFAULT_TIMESTEP],
guidance_scale=DEFAULT_GUIDANCE_SCALE
).images[0]
warmup_time = time.time() - warmup_start
logger.info(f"Pipeline warmup completed successfully in {warmup_time:.2f} seconds")
except Exception as e:
logger.warning(f"Pipeline warmup failed: {e}")
except Exception as e:
logger.error(f"Pipeline initialization failed: {e}")
raise
def process_image(image):
"""
Process the input image using the Difix pipeline to remove artifacts.
"""
global pipe
if image is None:
return None, "Error: No image provided"
if pipe is None:
error_msg = "Pipeline not initialized"
return None, f"Error: {error_msg}"
try:
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
# Process the image using Difix pipeline
output_image = pipe(
DEFAULT_PROMPT,
image=image,
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
timesteps=[DEFAULT_TIMESTEP],
guidance_scale=DEFAULT_GUIDANCE_SCALE
).images[0]
return output_image, None
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
logger.error(error_msg)
return None, error_msg
def gradio_interface(image):
"""Wrapper function for Gradio interface"""
result, error = process_image(image)
if error:
gr.Warning(error)
return None
return result
# Initialize pipeline at startup
logger.info("=== Starting Pipeline Initialization ===")
try:
initialize_pipeline()
model_status = "β
Pipeline loaded successfully"
logger.info("Pipeline initialization successful")
except Exception as e:
model_status = f"β Pipeline initialization failed: {e}"
logger.error(f"Pipeline initialization error: {e}")
logger.info("=== Creating UI Components ===")
# Article content for Difix
article = (
"<p style='font-size: 1.1em;'>"
"This demo showcases <strong>Difix</strong>, a single-step image diffusion model trained to enhance and remove artifacts in rendered novel views caused by underconstrained regions of 3D representation."
"</p>"
"<p><strong style='color: #76B900; font-size: 1.2em;'>Key Features:</strong></p>"
"<ul style='font-size: 1.1em;'>"
" <li>Single-step diffusion-based artifact removal for 3D novel views</li>"
" <li>Enhancement of underconstrained 3D regions (1024x576 default)</li>"
"</ul>"
"<p style='font-size: 1.1em;'>"
f"<strong>Model Status:</strong> {model_status}"
"</p>"
"<p style='font-size: 1.0em; color: #666;'>"
"Upload an image to see the restoration capabilities of Difix+. The model will automatically process your image and return an enhanced version."
"</p>"
"<p style='text-align: center;'>"
"<a href='https://github.com/nv-tlabs/Difix3D' target='_blank'>π§βπ» GitHub Repository</a> | "
"<a href='https://arxiv.org/abs/2503.01774' target='_blank'>π Research Paper</a> | "
"<a href='https://huggingface.co/nvidia/difix' target='_blank'>π€ Hugging Face Model</a>"
"</p>"
)
logger.info("Creating theme...")
# Define a modern green-inspired theme similar to NVIDIA
difix_theme = gr_themes.Default(
primary_hue=gr_themes.Color(
c50="#E6F7E6", # Lightest green
c100="#CCF2CC",
c200="#99E699",
c300="#66D966",
c400="#33CC33",
c500="#00B300", # Primary green
c600="#009900",
c700="#007A00",
c800="#005C00",
c900="#003D00", # Darkest green
c950="#002600"
),
secondary_hue=gr_themes.Color(
c50="#F0F8FF", # Light blue accent
c100="#E0F0FF",
c200="#C0E0FF",
c300="#A0D0FF",
c400="#80C0FF",
c500="#4A90E2", # Secondary blue
c600="#3A80D2",
c700="#2A70C2",
c800="#1A60B2",
c900="#0A50A2",
c950="#004092"
),
neutral_hue="slate",
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set(
body_background_fill="*neutral_50",
block_background_fill="white",
block_border_width="1px",
block_border_color="*neutral_200",
block_radius="8px",
block_shadow="0 2px 4px rgba(0,0,0,0.1)",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
)
logger.info("Creating Gradio interface...")
# Create Gradio interface with Blocks for better control
with gr.Blocks(theme=difix_theme, title="Difix") as demo:
gr.Markdown("<h1 style='text-align: center; margin: 0 auto; color: #00B300;'>π¨ Difix</h1>")
gr.HTML(article)
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="π€ Upload Image for Restoration",
height=400
)
process_btn = gr.Button(
"π Fix Image",
variant="primary",
size="lg"
)
gr.Examples(
examples=["assets/example1.png","assets/example2.png"],
inputs=[input_image],
label="π Example Images"
)
with gr.Column(scale=1):
output_image = gr.Image(
type="pil",
label="β¨ Fixed Image",
height=400
)
gr.Markdown("---")
gr.Markdown(
"<p style='text-align: center; color: #666; font-size: 0.9em;'>"
f"Model: {MODEL_NAME} | "
f"Resolution: {DEFAULT_WIDTH}Γ{DEFAULT_HEIGHT} | "
f"Prompt: '{DEFAULT_PROMPT}' | "
f"Steps: {DEFAULT_NUM_INFERENCE_STEPS} | "
f"Timestep: {DEFAULT_TIMESTEP} | "
f"Guidance Scale: {DEFAULT_GUIDANCE_SCALE}"
"</p>"
)
# Event handlers
process_btn.click(
fn=gradio_interface,
inputs=[input_image],
outputs=[output_image],
api_name="restore_image"
)
logger.info("Configuring queue...")
# Configure queueing for better performance
demo.queue(
default_concurrency_limit=2, # Process up to 2 requests simultaneously
max_size=20, # Maximum 20 users can wait in queue
)
logger.info("=== Gradio Interface Created Successfully ===")
if __name__ == "__main__":
logger.info("=== Starting Gradio Launch ===")
logger.info(f"Server config: 0.0.0.0:7860, max_threads=10")
# Set up file access for assets directory
assets_path = Path("assets").absolute()
if assets_path.exists():
logger.info(f"Setting up file access for assets directory: {assets_path}")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
max_threads=10,
# Allow access to assets directory
allowed_paths=[str(assets_path)] if assets_path.exists() else []
)
|