huckiyang's picture
pa zh-tw
5e7d162
import os
import tempfile
import sys
import subprocess
import gradio as gr
import numpy as np
import soundfile as sf
import librosa
import torch
import torch.cuda
import gc
import json
import datetime
from pathlib import Path
# Check if required packages are installed, if not install them
try:
from espnet2.bin.s2t_inference import Speech2Text
import torchaudio
# Try importing espnet_model_zoo specifically
try:
import espnet_model_zoo
print("All packages already installed.")
except ModuleNotFoundError:
print("Installing espnet_model_zoo. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
import espnet_model_zoo
print("espnet_model_zoo installed successfully.")
# Check for opencc-python-reimplemented
try:
from opencc import OpenCC
print("OpenCC already installed.")
except ModuleNotFoundError:
print("Installing opencc-python-reimplemented. This may take a moment...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "opencc-python-reimplemented"])
from opencc import OpenCC
print("OpenCC installed successfully.")
except ModuleNotFoundError as e:
missing_module = str(e).split("'")[1]
print(f"Installing missing module: {missing_module}")
if missing_module == "espnet2":
print("Installing ESPnet. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "espnet"])
elif missing_module == "torchaudio":
print("Installing torchaudio. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "torchaudio"])
# Try importing again
try:
from espnet2.bin.s2t_inference import Speech2Text
import torchaudio
# Also check for espnet_model_zoo
try:
import espnet_model_zoo
except ModuleNotFoundError:
print("Installing espnet_model_zoo. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
import espnet_model_zoo
# Also check for OpenCC
try:
from opencc import OpenCC
except ModuleNotFoundError:
print("Installing opencc-python-reimplemented. This may take a moment...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "opencc-python-reimplemented"])
from opencc import OpenCC
print("All required packages installed successfully.")
except ModuleNotFoundError as e:
print(f"Failed to install {str(e).split('No module named ')[1]}. Please install manually.")
raise
# Initialize the model with language option
def load_model():
# Force garbage collection
gc.collect()
torch.cuda.empty_cache()
# Set memory-efficient options
torch.cuda.set_per_process_memory_fraction(0.95) # Use 95% of available memory
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# For memory efficiency, you could try loading with 8-bit quantization
# This requires the bitsandbytes library
# pip install bitsandbytes
model = Speech2Text.from_pretrained(
"espnet/owls_4B_180K",
task_sym="<asr>",
beam_size=1,
device=device
)
return model
# Load the model at startup with English as default
print("Loading multilingual model...")
model = load_model()
print("Model loaded successfully!")
def transcribe_audio(audio_file, language):
"""Process the audio file and return the transcription"""
if audio_file is None:
return "Please upload an audio file or record audio."
# If audio is a tuple (from microphone recording)
if isinstance(audio_file, tuple):
sr, audio_data = audio_file
# Create a temporary file to save the audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_path = temp_audio.name
sf.write(temp_path, audio_data, sr)
audio_file = temp_path
# Load and resample the audio file to 16kHz
speech, _ = librosa.load(audio_file, sr=16000)
# Update the language symbol if needed
model.beam_search.hyps = None
model.beam_search.pre_beam_score_key = None
if language != None:
model.lang_sym = language
# Perform ASR
text, *_ = model(speech)[0]
# Clean up temporary file if created
if isinstance(audio_file, str) and audio_file.startswith(tempfile.gettempdir()):
os.unlink(audio_file)
return text
# Function to handle English transcription
def transcribe_english(audio_file):
return transcribe_audio(audio_file, "<eng>")
# Function to handle Chinese transcription
def transcribe_chinese(audio_file, chinese_variant="Traditional"):
"""
Process the audio file and return Chinese transcription in simplified or traditional characters
Args:
audio_file: Path to the audio file
chinese_variant: Either "Simplified" or "Traditional"
"""
# First get the base transcription
asr_text = transcribe_audio(audio_file, "<zho>")
# Convert between simplified and traditional Chinese if needed
if chinese_variant == "Traditional":
# Convert simplified to traditional
# Use s2t for more complete conversion from Simplified to Traditional
cc = OpenCC('s2twp') # s2twp: Simplified to Traditional (Taiwan)
asr_text = cc.convert(asr_text)
cc = OpenCC('s2t') # s2t
asr_text = cc.convert(asr_text)
elif chinese_variant == "Simplified" and not asr_text.isascii():
# If the text contains non-ASCII characters, it might be traditional
# Convert traditional to simplified just to be safe
cc = OpenCC('t2s') # t2s: Traditional to Simplified
asr_text = cc.convert(asr_text)
return asr_text
# Function to handle Japanese transcription
def transcribe_japanese(audio_file):
return transcribe_audio(audio_file, "<jpn>")
# Function to handle Korean transcription
def transcribe_korean(audio_file):
return transcribe_audio(audio_file, "<kor>")
# Function to handle Thai transcription
def transcribe_thai(audio_file):
return transcribe_audio(audio_file, "<tha>")
# Function to handle Italian transcription
def transcribe_italian(audio_file):
return transcribe_audio(audio_file, "<ita>")
# Function to handle German transcription
def transcribe_german(audio_file):
return transcribe_audio(audio_file, "<deu>")
# Create a function to save feedback
def save_feedback(transcription, rating, language, audio_path=None):
"""Save user feedback to a JSON file"""
# Create feedback directory if it doesn't exist
feedback_dir = Path("feedback_data")
feedback_dir.mkdir(exist_ok=True)
# Create a unique filename based on timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
feedback_file = feedback_dir / f"feedback_{timestamp}.json"
# Prepare feedback data
feedback_data = {
"timestamp": timestamp,
"language": language,
"transcription": transcription,
"rating": rating,
"audio_path": str(audio_path) if audio_path else None
}
# Save to JSON file
with open(feedback_file, "w", encoding="utf-8") as f:
json.dump(feedback_data, f, ensure_ascii=False, indent=2)
return "🪂 Thank you for your feedback!"
# Create the Gradio interface with tabs
demo = gr.Blocks(title="NVIDIA Research Multilingual Demo")
with demo:
gr.Markdown("# NVIDIA Research Multilingual Demo")
gr.Markdown("Upload or record audio to transcribe up to 150 human languages using the NVIDIA Research (NVR) 4B model. Audio will be automatically resampled to 16kHz.")
gr.Markdown("You can choose 🎙️ your microphone or 💻 upload an audio file in the tag next to Microphone Recording. The file will be deleted after the demo ends.")
with gr.Tabs():
with gr.TabItem("Microphone Recording"):
language_mic = gr.Radio(
["English", "Mandarin", "Japanese", "Korean", "Thai", "Italian", "German"],
label="Select Language",
value="English"
)
# Add Chinese variant selection that appears only when Mandarin is selected
chinese_variant_mic = gr.Radio(
["Traditional", "Simplified"],
label="Mandarin User Desired Output ➡️ zh-cn: Simplified or zh-tw: Traditional",
value="Traditional",
visible=False
)
# Make Chinese variant selection visible only when Mandarin is selected
def update_chinese_variant_visibility(lang):
return gr.update(visible=(lang == "Mandarin"))
language_mic.change(
fn=update_chinese_variant_visibility,
inputs=language_mic,
outputs=chinese_variant_mic
)
with gr.Row():
with gr.Column():
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
mic_button = gr.Button("Transcribe Recording")
with gr.Column():
mic_output = gr.Textbox(label="Transcription")
# Add feedback components
with gr.Row():
mic_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
mic_feedback_btn = gr.Button("Submit Feedback")
mic_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
def transcribe_mic(audio, lang, chinese_variant=None):
lang_map = {
"English": "<eng>",
"Mandarin": "<zho>",
"Japanese": "<jpn>",
"Korean": "<kor>",
"Thai": "<tha>",
"Italian": "<ita>",
"German": "<deu>"
}
# Special handling for Chinese with variant selection
if lang == "Mandarin" and chinese_variant:
return transcribe_chinese(audio, chinese_variant)
return transcribe_audio(audio, lang_map.get(lang, "<eng>"))
mic_button.click(fn=transcribe_mic, inputs=[mic_input, language_mic, chinese_variant_mic], outputs=mic_output)
# Add feedback submission function
def submit_mic_feedback(transcription, rating, language, chinese_variant):
lang_name = language # Already a string like "English"
return save_feedback(transcription, rating, f"{lang_name} ({chinese_variant})", None)
mic_feedback_btn.click(
fn=submit_mic_feedback,
inputs=[mic_output, mic_rating, language_mic, chinese_variant_mic],
outputs=mic_feedback_msg
)
with gr.TabItem("English"):
with gr.Row():
with gr.Column():
en_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
en_button = gr.Button("Transcribe Speech")
with gr.Column():
en_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
en_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
en_feedback_btn = gr.Button("Submit Feedback")
en_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_en_sample_48k.wav"):
gr.Examples(
examples=[["wav_en_sample_48k.wav"]],
inputs=en_input
)
en_button.click(fn=transcribe_english, inputs=en_input, outputs=en_output)
# Add feedback submission
def submit_en_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "English", audio_path)
en_feedback_btn.click(
fn=submit_en_feedback,
inputs=[en_output, en_rating, en_input],
outputs=en_feedback_msg
)
with gr.TabItem("Mandarin"):
# Add Chinese variant selection
chinese_variant = gr.Radio(
["Traditional", "Simplified"],
label="Mandarin User Desired Output ➡️ zh-cn: Simplified or zh-tw: Traditional",
value="Traditional"
)
with gr.Row():
with gr.Column():
zh_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
zh_button = gr.Button("Transcribe Speech")
with gr.Column():
zh_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
zh_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
zh_feedback_btn = gr.Button("Submit Feedback")
zh_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_zh_tw_sample_16k.wav"):
gr.Examples(
examples=[["wav_zh_tw_sample_16k.wav"]],
inputs=zh_input
)
# Update the click function to include the Chinese variant
def transcribe_chinese_with_variant(audio_file, variant):
return transcribe_chinese(audio_file, variant.lower())
zh_button.click(fn=transcribe_chinese_with_variant, inputs=[zh_input, chinese_variant], outputs=zh_output)
# Update feedback submission to include variant
def submit_zh_feedback(transcription, rating, audio_path, variant):
return save_feedback(transcription, rating, f"Mandarin ({variant})", audio_path)
zh_feedback_btn.click(
fn=submit_zh_feedback,
inputs=[zh_output, zh_rating, zh_input, chinese_variant],
outputs=zh_feedback_msg
)
with gr.TabItem("Japanese"):
with gr.Row():
with gr.Column():
jp_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
jp_button = gr.Button("Transcribe Speech")
with gr.Column():
jp_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
jp_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
jp_feedback_btn = gr.Button("Submit Feedback")
jp_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_jp_sample_48k.wav"):
gr.Examples(
examples=[["wav_jp_sample_48k.wav"]],
inputs=jp_input
)
jp_button.click(fn=transcribe_japanese, inputs=jp_input, outputs=jp_output)
# Add feedback submission
def submit_jp_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "Japanese", audio_path)
jp_feedback_btn.click(
fn=submit_jp_feedback,
inputs=[jp_output, jp_rating, jp_input],
outputs=jp_feedback_msg
)
with gr.TabItem("Korean"):
with gr.Row():
with gr.Column():
kr_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
kr_button = gr.Button("Transcribe Speech")
with gr.Column():
kr_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
kr_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
kr_feedback_btn = gr.Button("Submit Feedback")
kr_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_kr_sample_48k.wav"):
gr.Examples(
examples=[["wav_kr_sample_48k.wav"]],
inputs=kr_input
)
kr_button.click(fn=transcribe_korean, inputs=kr_input, outputs=kr_output)
# Add feedback submission
def submit_kr_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "Korean", audio_path)
kr_feedback_btn.click(
fn=submit_kr_feedback,
inputs=[kr_output, kr_rating, kr_input],
outputs=kr_feedback_msg
)
with gr.TabItem("Thai"):
with gr.Row():
with gr.Column():
th_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
th_button = gr.Button("Transcribe Speech")
with gr.Column():
th_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
th_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
th_feedback_btn = gr.Button("Submit Feedback")
th_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_thai_sample.wav"):
gr.Examples(
examples=[["wav_thai_sample.wav"]],
inputs=th_input
)
th_button.click(fn=transcribe_thai, inputs=th_input, outputs=th_output)
# Add feedback submission
def submit_th_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "Thai", audio_path)
th_feedback_btn.click(
fn=submit_th_feedback,
inputs=[th_output, th_rating, th_input],
outputs=th_feedback_msg
)
with gr.TabItem("Italian"):
with gr.Row():
with gr.Column():
it_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
it_button = gr.Button("Transcribe Speech")
with gr.Column():
it_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
it_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
it_feedback_btn = gr.Button("Submit Feedback")
it_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_it_sample.wav"):
gr.Examples(
examples=[["wav_it_sample.wav"]],
inputs=it_input
)
it_button.click(fn=transcribe_italian, inputs=it_input, outputs=it_output)
# Add feedback submission
def submit_it_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "Italian", audio_path)
it_feedback_btn.click(
fn=submit_it_feedback,
inputs=[it_output, it_rating, it_input],
outputs=it_feedback_msg
)
with gr.TabItem("German"):
with gr.Row():
with gr.Column():
de_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
de_button = gr.Button("Transcribe Speech")
with gr.Column():
de_output = gr.Textbox(label="Speech Transcription")
# Add feedback components
with gr.Row():
de_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3,
label="Rate the transcription quality (1=worst, 5=best)")
de_feedback_btn = gr.Button("Submit Feedback")
de_feedback_msg = gr.Textbox(label="Feedback Status", visible=True)
# Add example if the file exists
if os.path.exists("wav_de_sample.wav"):
gr.Examples(
examples=[["wav_de_sample.wav"]],
inputs=de_input
)
de_button.click(fn=transcribe_german, inputs=de_input, outputs=de_output)
# Add feedback submission
def submit_de_feedback(transcription, rating, audio_path):
return save_feedback(transcription, rating, "German", audio_path)
de_feedback_btn.click(
fn=submit_de_feedback,
inputs=[de_output, de_rating, de_input],
outputs=de_feedback_msg
)
# Launch the app with Hugging Face Spaces compatible settings
if __name__ == "__main__":
demo.launch(share=False)