Spaces:
Runtime error
Runtime error
[demo] 4B fixing
Browse files- README.md +4 -4
- app.py +301 -0
- requirements.txt +8 -0
- wav_de_sample.wav +0 -0
- wav_en_sample_48k.wav +0 -0
- wav_it_sample.wav +0 -0
- wav_jp_sample_48k.wav +0 -0
- wav_kr_sample_48k.wav +0 -0
- wav_thai_sample.wav +0 -0
- wav_zh_tw_sample_16k.wav +0 -0
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Multilingual
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Multilingual Scaling
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Voice Understanding Demo
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import sys
|
4 |
+
import subprocess
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
import librosa
|
9 |
+
import torch
|
10 |
+
import torch.cuda
|
11 |
+
import gc
|
12 |
+
|
13 |
+
# Check if required packages are installed, if not install them
|
14 |
+
try:
|
15 |
+
from espnet2.bin.s2t_inference import Speech2Text
|
16 |
+
import torchaudio
|
17 |
+
# Try importing espnet_model_zoo specifically
|
18 |
+
try:
|
19 |
+
import espnet_model_zoo
|
20 |
+
print("All packages already installed.")
|
21 |
+
except ModuleNotFoundError:
|
22 |
+
print("Installing espnet_model_zoo. This may take a few minutes...")
|
23 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
|
24 |
+
import espnet_model_zoo
|
25 |
+
print("espnet_model_zoo installed successfully.")
|
26 |
+
except ModuleNotFoundError as e:
|
27 |
+
missing_module = str(e).split("'")[1]
|
28 |
+
print(f"Installing missing module: {missing_module}")
|
29 |
+
|
30 |
+
if missing_module == "espnet2":
|
31 |
+
print("Installing ESPnet. This may take a few minutes...")
|
32 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "espnet"])
|
33 |
+
elif missing_module == "torchaudio":
|
34 |
+
print("Installing torchaudio. This may take a few minutes...")
|
35 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "torchaudio"])
|
36 |
+
|
37 |
+
# Try importing again
|
38 |
+
try:
|
39 |
+
from espnet2.bin.s2t_inference import Speech2Text
|
40 |
+
import torchaudio
|
41 |
+
# Also check for espnet_model_zoo
|
42 |
+
try:
|
43 |
+
import espnet_model_zoo
|
44 |
+
except ModuleNotFoundError:
|
45 |
+
print("Installing espnet_model_zoo. This may take a few minutes...")
|
46 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
|
47 |
+
import espnet_model_zoo
|
48 |
+
print("All required packages installed successfully.")
|
49 |
+
except ModuleNotFoundError as e:
|
50 |
+
print(f"Failed to install {str(e).split('No module named ')[1]}. Please install manually.")
|
51 |
+
raise
|
52 |
+
|
53 |
+
# Initialize the model with language option
|
54 |
+
def load_model():
|
55 |
+
# Force garbage collection
|
56 |
+
gc.collect()
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
|
59 |
+
# Set memory-efficient options
|
60 |
+
torch.cuda.set_per_process_memory_fraction(0.95) # Use 95% of available memory
|
61 |
+
|
62 |
+
# Check if CUDA is available
|
63 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
+
print(f"Using device: {device}")
|
65 |
+
|
66 |
+
# For memory efficiency, you could try loading with 8-bit quantization
|
67 |
+
# This requires the bitsandbytes library
|
68 |
+
# pip install bitsandbytes
|
69 |
+
|
70 |
+
model = Speech2Text.from_pretrained(
|
71 |
+
"espnet/owls_4B_180K",
|
72 |
+
task_sym="<asr>",
|
73 |
+
beam_size=1,
|
74 |
+
device=device
|
75 |
+
)
|
76 |
+
return model
|
77 |
+
|
78 |
+
# Load the model at startup with English as default
|
79 |
+
print("Loading multilingual model...")
|
80 |
+
model = load_model()
|
81 |
+
print("Model loaded successfully!")
|
82 |
+
|
83 |
+
def transcribe_audio(audio_file, language):
|
84 |
+
"""Process the audio file and return the transcription"""
|
85 |
+
if audio_file is None:
|
86 |
+
return "Please upload an audio file or record audio."
|
87 |
+
|
88 |
+
# If audio is a tuple (from microphone recording)
|
89 |
+
if isinstance(audio_file, tuple):
|
90 |
+
sr, audio_data = audio_file
|
91 |
+
# Create a temporary file to save the audio
|
92 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
93 |
+
temp_path = temp_audio.name
|
94 |
+
sf.write(temp_path, audio_data, sr)
|
95 |
+
audio_file = temp_path
|
96 |
+
|
97 |
+
# Load and resample the audio file to 16kHz
|
98 |
+
speech, _ = librosa.load(audio_file, sr=16000)
|
99 |
+
|
100 |
+
# Update the language symbol if needed
|
101 |
+
model.beam_search.hyps = None
|
102 |
+
model.beam_search.pre_beam_score_key = None
|
103 |
+
|
104 |
+
if language != None:
|
105 |
+
model.lang_sym = language
|
106 |
+
|
107 |
+
# Perform ASR
|
108 |
+
text, *_ = model(speech)[0]
|
109 |
+
|
110 |
+
# Clean up temporary file if created
|
111 |
+
if isinstance(audio_file, str) and audio_file.startswith(tempfile.gettempdir()):
|
112 |
+
os.unlink(audio_file)
|
113 |
+
|
114 |
+
return text
|
115 |
+
|
116 |
+
# Function to handle English transcription
|
117 |
+
def transcribe_english(audio_file):
|
118 |
+
return transcribe_audio(audio_file, "<eng>")
|
119 |
+
|
120 |
+
# Function to handle Chinese transcription
|
121 |
+
def transcribe_chinese(audio_file):
|
122 |
+
return transcribe_audio(audio_file, "<zho>")
|
123 |
+
|
124 |
+
# Function to handle Japanese transcription
|
125 |
+
def transcribe_japanese(audio_file):
|
126 |
+
return transcribe_audio(audio_file, "<jpn>")
|
127 |
+
|
128 |
+
# Function to handle Korean transcription
|
129 |
+
def transcribe_korean(audio_file):
|
130 |
+
return transcribe_audio(audio_file, "<kor>")
|
131 |
+
|
132 |
+
# Function to handle Thai transcription
|
133 |
+
def transcribe_thai(audio_file):
|
134 |
+
return transcribe_audio(audio_file, "<tha>")
|
135 |
+
|
136 |
+
# Function to handle Italian transcription
|
137 |
+
def transcribe_italian(audio_file):
|
138 |
+
return transcribe_audio(audio_file, "<ita>")
|
139 |
+
|
140 |
+
# Function to handle German transcription
|
141 |
+
def transcribe_german(audio_file):
|
142 |
+
return transcribe_audio(audio_file, "<deu>")
|
143 |
+
|
144 |
+
# Create the Gradio interface with tabs
|
145 |
+
demo = gr.Blocks(title="NVIDIA Research Multilingual Demo")
|
146 |
+
|
147 |
+
with demo:
|
148 |
+
gr.Markdown("# NVIDIA Research Multilingual Demo")
|
149 |
+
gr.Markdown("Upload or record audio to transcribe up to 150 human languages using the NVIDIA Research (NVR) 9B model. Audio will be automatically resampled to 16kHz.")
|
150 |
+
|
151 |
+
with gr.Tabs():
|
152 |
+
with gr.TabItem("Microphone Recording"):
|
153 |
+
language_mic = gr.Radio(
|
154 |
+
["English", "Mandarin", "Japanese", "Korean", "Thai", "Italian", "German"],
|
155 |
+
label="Select Language",
|
156 |
+
value="English"
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column():
|
161 |
+
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
|
162 |
+
mic_button = gr.Button("Transcribe Recording")
|
163 |
+
with gr.Column():
|
164 |
+
mic_output = gr.Textbox(label="Transcription")
|
165 |
+
|
166 |
+
def transcribe_mic(audio, lang):
|
167 |
+
lang_map = {
|
168 |
+
"English": "<eng>",
|
169 |
+
"Chinese": "<zho>",
|
170 |
+
"Japanese": "<jpn>",
|
171 |
+
"Korean": "<kor>",
|
172 |
+
"Thai": "<tha>",
|
173 |
+
"Italian": "<ita>",
|
174 |
+
"German": "<deu>"
|
175 |
+
}
|
176 |
+
return transcribe_audio(audio, lang_map.get(lang, "<eng>"))
|
177 |
+
|
178 |
+
mic_button.click(fn=transcribe_mic, inputs=[mic_input, language_mic], outputs=mic_output)
|
179 |
+
|
180 |
+
with gr.TabItem("English"):
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
en_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
184 |
+
en_button = gr.Button("Transcribe Speech")
|
185 |
+
with gr.Column():
|
186 |
+
en_output = gr.Textbox(label="Speech Transcription")
|
187 |
+
|
188 |
+
# Add example if the file exists
|
189 |
+
if os.path.exists("wav_en_sample_48k.wav"):
|
190 |
+
gr.Examples(
|
191 |
+
examples=[["wav_en_sample_48k.wav"]],
|
192 |
+
inputs=en_input
|
193 |
+
)
|
194 |
+
|
195 |
+
en_button.click(fn=transcribe_english, inputs=en_input, outputs=en_output)
|
196 |
+
|
197 |
+
with gr.TabItem("Mandarin"):
|
198 |
+
with gr.Row():
|
199 |
+
with gr.Column():
|
200 |
+
zh_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
201 |
+
zh_button = gr.Button("Transcribe Speech")
|
202 |
+
with gr.Column():
|
203 |
+
zh_output = gr.Textbox(label="Speech Transcription")
|
204 |
+
|
205 |
+
# Add example if the file exists
|
206 |
+
if os.path.exists("wav_zh_tw_sample_16k.wav"):
|
207 |
+
gr.Examples(
|
208 |
+
examples=[["wav_zh_tw_sample_16k.wav"]],
|
209 |
+
inputs=zh_input
|
210 |
+
)
|
211 |
+
|
212 |
+
zh_button.click(fn=transcribe_chinese, inputs=zh_input, outputs=zh_output)
|
213 |
+
|
214 |
+
with gr.TabItem("Japanese"):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
+
jp_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
218 |
+
jp_button = gr.Button("Transcribe Speech")
|
219 |
+
with gr.Column():
|
220 |
+
jp_output = gr.Textbox(label="Speech Transcription")
|
221 |
+
|
222 |
+
# Add example if the file exists
|
223 |
+
if os.path.exists("wav_jp_sample_48k.wav"):
|
224 |
+
gr.Examples(
|
225 |
+
examples=[["wav_jp_sample_48k.wav"]],
|
226 |
+
inputs=jp_input
|
227 |
+
)
|
228 |
+
|
229 |
+
jp_button.click(fn=transcribe_japanese, inputs=jp_input, outputs=jp_output)
|
230 |
+
|
231 |
+
with gr.TabItem("Korean"):
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column():
|
234 |
+
kr_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
235 |
+
kr_button = gr.Button("Transcribe Speech")
|
236 |
+
with gr.Column():
|
237 |
+
kr_output = gr.Textbox(label="Speech Transcription")
|
238 |
+
|
239 |
+
# Add example if the file exists
|
240 |
+
if os.path.exists("wav_kr_sample_48k.wav"):
|
241 |
+
gr.Examples(
|
242 |
+
examples=[["wav_kr_sample_48k.wav"]],
|
243 |
+
inputs=kr_input
|
244 |
+
)
|
245 |
+
|
246 |
+
kr_button.click(fn=transcribe_korean, inputs=kr_input, outputs=kr_output)
|
247 |
+
|
248 |
+
with gr.TabItem("Thai"):
|
249 |
+
with gr.Row():
|
250 |
+
with gr.Column():
|
251 |
+
th_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
252 |
+
th_button = gr.Button("Transcribe Speech")
|
253 |
+
with gr.Column():
|
254 |
+
th_output = gr.Textbox(label="Speech Transcription")
|
255 |
+
|
256 |
+
# Add example if the file exists
|
257 |
+
if os.path.exists("wav_thai_sample.wav"):
|
258 |
+
gr.Examples(
|
259 |
+
examples=[["wav_thai_sample.wav"]],
|
260 |
+
inputs=th_input
|
261 |
+
)
|
262 |
+
|
263 |
+
th_button.click(fn=transcribe_thai, inputs=th_input, outputs=th_output)
|
264 |
+
|
265 |
+
with gr.TabItem("Italian"):
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column():
|
268 |
+
it_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
269 |
+
it_button = gr.Button("Transcribe Speech")
|
270 |
+
with gr.Column():
|
271 |
+
it_output = gr.Textbox(label="Speech Transcription")
|
272 |
+
|
273 |
+
# Add example if the file exists
|
274 |
+
if os.path.exists("wav_it_sample.wav"):
|
275 |
+
gr.Examples(
|
276 |
+
examples=[["wav_it_sample.wav"]],
|
277 |
+
inputs=it_input
|
278 |
+
)
|
279 |
+
|
280 |
+
it_button.click(fn=transcribe_italian, inputs=it_input, outputs=it_output)
|
281 |
+
|
282 |
+
with gr.TabItem("German"):
|
283 |
+
with gr.Row():
|
284 |
+
with gr.Column():
|
285 |
+
de_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
|
286 |
+
de_button = gr.Button("Transcribe Speech")
|
287 |
+
with gr.Column():
|
288 |
+
de_output = gr.Textbox(label="Speech Transcription")
|
289 |
+
|
290 |
+
# Add example if the file exists
|
291 |
+
if os.path.exists("wav_de_sample.wav"):
|
292 |
+
gr.Examples(
|
293 |
+
examples=[["wav_de_sample.wav"]],
|
294 |
+
inputs=de_input
|
295 |
+
)
|
296 |
+
|
297 |
+
de_button.click(fn=transcribe_german, inputs=de_input, outputs=de_output)
|
298 |
+
|
299 |
+
# Launch the app with Hugging Face Spaces compatible settings
|
300 |
+
if __name__ == "__main__":
|
301 |
+
demo.launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
espnet_model_zoo
|
3 |
+
espnet
|
4 |
+
librosa
|
5 |
+
soundfile
|
6 |
+
numpy
|
7 |
+
torch
|
8 |
+
torchaudio
|
wav_de_sample.wav
ADDED
Binary file (114 kB). View file
|
|
wav_en_sample_48k.wav
ADDED
Binary file (629 kB). View file
|
|
wav_it_sample.wav
ADDED
Binary file (129 kB). View file
|
|
wav_jp_sample_48k.wav
ADDED
Binary file (391 kB). View file
|
|
wav_kr_sample_48k.wav
ADDED
Binary file (422 kB). View file
|
|
wav_thai_sample.wav
ADDED
Binary file (227 kB). View file
|
|
wav_zh_tw_sample_16k.wav
ADDED
Binary file (129 kB). View file
|
|