import os import tempfile import sys import subprocess import gradio as gr import numpy as np import soundfile as sf import librosa import torch import torch.cuda import gc import json import datetime from pathlib import Path # Check if required packages are installed, if not install them try: from espnet2.bin.s2t_inference import Speech2Text import torchaudio # Try importing espnet_model_zoo specifically try: import espnet_model_zoo print("All packages already installed.") except ModuleNotFoundError: print("Installing espnet_model_zoo. This may take a few minutes...") subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"]) import espnet_model_zoo print("espnet_model_zoo installed successfully.") # Check for opencc-python-reimplemented try: from opencc import OpenCC print("OpenCC already installed.") except ModuleNotFoundError: print("Installing opencc-python-reimplemented. This may take a moment...") subprocess.check_call([sys.executable, "-m", "pip", "install", "opencc-python-reimplemented"]) from opencc import OpenCC print("OpenCC installed successfully.") except ModuleNotFoundError as e: missing_module = str(e).split("'")[1] print(f"Installing missing module: {missing_module}") if missing_module == "espnet2": print("Installing ESPnet. This may take a few minutes...") subprocess.check_call([sys.executable, "-m", "pip", "install", "espnet"]) elif missing_module == "torchaudio": print("Installing torchaudio. This may take a few minutes...") subprocess.check_call([sys.executable, "-m", "pip", "install", "torchaudio"]) # Try importing again try: from espnet2.bin.s2t_inference import Speech2Text import torchaudio # Also check for espnet_model_zoo try: import espnet_model_zoo except ModuleNotFoundError: print("Installing espnet_model_zoo. This may take a few minutes...") subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"]) import espnet_model_zoo # Also check for OpenCC try: from opencc import OpenCC except ModuleNotFoundError: print("Installing opencc-python-reimplemented. This may take a moment...") subprocess.check_call([sys.executable, "-m", "pip", "install", "opencc-python-reimplemented"]) from opencc import OpenCC print("All required packages installed successfully.") except ModuleNotFoundError as e: print(f"Failed to install {str(e).split('No module named ')[1]}. Please install manually.") raise # Initialize the model with language option def load_model(): # Force garbage collection gc.collect() torch.cuda.empty_cache() # Set memory-efficient options torch.cuda.set_per_process_memory_fraction(0.95) # Use 95% of available memory # Check if CUDA is available device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # For memory efficiency, you could try loading with 8-bit quantization # This requires the bitsandbytes library # pip install bitsandbytes model = Speech2Text.from_pretrained( "espnet/owls_4B_180K", task_sym="", beam_size=1, device=device ) return model # Load the model at startup with English as default print("Loading multilingual model...") model = load_model() print("Model loaded successfully!") def transcribe_audio(audio_file, language): """Process the audio file and return the transcription""" if audio_file is None: return "Please upload an audio file or record audio." # If audio is a tuple (from microphone recording) if isinstance(audio_file, tuple): sr, audio_data = audio_file # Create a temporary file to save the audio with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: temp_path = temp_audio.name sf.write(temp_path, audio_data, sr) audio_file = temp_path # Load and resample the audio file to 16kHz speech, _ = librosa.load(audio_file, sr=16000) # Update the language symbol if needed model.beam_search.hyps = None model.beam_search.pre_beam_score_key = None if language != None: model.lang_sym = language # Perform ASR text, *_ = model(speech)[0] # Clean up temporary file if created if isinstance(audio_file, str) and audio_file.startswith(tempfile.gettempdir()): os.unlink(audio_file) return text # Function to handle English transcription def transcribe_english(audio_file): return transcribe_audio(audio_file, "") # Function to handle Chinese transcription def transcribe_chinese(audio_file, chinese_variant="Traditional"): """ Process the audio file and return Chinese transcription in simplified or traditional characters Args: audio_file: Path to the audio file chinese_variant: Either "Simplified" or "Traditional" """ # First get the base transcription asr_text = transcribe_audio(audio_file, "") # Convert between simplified and traditional Chinese if needed if chinese_variant == "Traditional": # Convert simplified to traditional # Use s2t for more complete conversion from Simplified to Traditional cc = OpenCC('s2twp') # s2twp: Simplified to Traditional (Taiwan) asr_text = cc.convert(asr_text) cc = OpenCC('s2t') # s2t asr_text = cc.convert(asr_text) elif chinese_variant == "Simplified" and not asr_text.isascii(): # If the text contains non-ASCII characters, it might be traditional # Convert traditional to simplified just to be safe cc = OpenCC('t2s') # t2s: Traditional to Simplified asr_text = cc.convert(asr_text) return asr_text # Function to handle Japanese transcription def transcribe_japanese(audio_file): return transcribe_audio(audio_file, "") # Function to handle Korean transcription def transcribe_korean(audio_file): return transcribe_audio(audio_file, "") # Function to handle Thai transcription def transcribe_thai(audio_file): return transcribe_audio(audio_file, "") # Function to handle Italian transcription def transcribe_italian(audio_file): return transcribe_audio(audio_file, "") # Function to handle German transcription def transcribe_german(audio_file): return transcribe_audio(audio_file, "") # Create a function to save feedback def save_feedback(transcription, rating, language, audio_path=None): """Save user feedback to a JSON file""" # Create feedback directory if it doesn't exist feedback_dir = Path("feedback_data") feedback_dir.mkdir(exist_ok=True) # Create a unique filename based on timestamp timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") feedback_file = feedback_dir / f"feedback_{timestamp}.json" # Prepare feedback data feedback_data = { "timestamp": timestamp, "language": language, "transcription": transcription, "rating": rating, "audio_path": str(audio_path) if audio_path else None } # Save to JSON file with open(feedback_file, "w", encoding="utf-8") as f: json.dump(feedback_data, f, ensure_ascii=False, indent=2) return "🪂 Thank you for your feedback!" # Create the Gradio interface with tabs demo = gr.Blocks(title="NVIDIA Research Multilingual Demo") with demo: gr.Markdown("# NVIDIA Research Multilingual Demo") gr.Markdown("Upload or record audio to transcribe up to 150 human languages using the NVIDIA Research (NVR) 4B model. Audio will be automatically resampled to 16kHz.") gr.Markdown("You can choose 🎙️ your microphone or 💻 upload an audio file in the tag next to Microphone Recording. The file will be deleted after the demo ends.") with gr.Tabs(): with gr.TabItem("Microphone Recording"): language_mic = gr.Radio( ["English", "Mandarin", "Japanese", "Korean", "Thai", "Italian", "German"], label="Select Language", value="English" ) # Add Chinese variant selection that appears only when Mandarin is selected chinese_variant_mic = gr.Radio( ["Traditional", "Simplified"], label="Mandarin User Desired Output ➡️ zh-cn: Simplified or zh-tw: Traditional", value="Traditional", visible=False ) # Make Chinese variant selection visible only when Mandarin is selected def update_chinese_variant_visibility(lang): return gr.update(visible=(lang == "Mandarin")) language_mic.change( fn=update_chinese_variant_visibility, inputs=language_mic, outputs=chinese_variant_mic ) with gr.Row(): with gr.Column(): mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio") mic_button = gr.Button("Transcribe Recording") with gr.Column(): mic_output = gr.Textbox(label="Transcription") # Add feedback components with gr.Row(): mic_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") mic_feedback_btn = gr.Button("Submit Feedback") mic_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) def transcribe_mic(audio, lang, chinese_variant=None): lang_map = { "English": "", "Mandarin": "", "Japanese": "", "Korean": "", "Thai": "", "Italian": "", "German": "" } # Special handling for Chinese with variant selection if lang == "Mandarin" and chinese_variant: return transcribe_chinese(audio, chinese_variant) return transcribe_audio(audio, lang_map.get(lang, "")) mic_button.click(fn=transcribe_mic, inputs=[mic_input, language_mic, chinese_variant_mic], outputs=mic_output) # Add feedback submission function def submit_mic_feedback(transcription, rating, language, chinese_variant): lang_name = language # Already a string like "English" return save_feedback(transcription, rating, f"{lang_name} ({chinese_variant})", None) mic_feedback_btn.click( fn=submit_mic_feedback, inputs=[mic_output, mic_rating, language_mic, chinese_variant_mic], outputs=mic_feedback_msg ) with gr.TabItem("English"): with gr.Row(): with gr.Column(): en_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") en_button = gr.Button("Transcribe Speech") with gr.Column(): en_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): en_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") en_feedback_btn = gr.Button("Submit Feedback") en_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_en_sample_48k.wav"): gr.Examples( examples=[["wav_en_sample_48k.wav"]], inputs=en_input ) en_button.click(fn=transcribe_english, inputs=en_input, outputs=en_output) # Add feedback submission def submit_en_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "English", audio_path) en_feedback_btn.click( fn=submit_en_feedback, inputs=[en_output, en_rating, en_input], outputs=en_feedback_msg ) with gr.TabItem("Mandarin"): # Add Chinese variant selection chinese_variant = gr.Radio( ["Traditional", "Simplified"], label="Mandarin User Desired Output ➡️ zh-cn: Simplified or zh-tw: Traditional", value="Traditional" ) with gr.Row(): with gr.Column(): zh_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") zh_button = gr.Button("Transcribe Speech") with gr.Column(): zh_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): zh_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") zh_feedback_btn = gr.Button("Submit Feedback") zh_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_zh_tw_sample_16k.wav"): gr.Examples( examples=[["wav_zh_tw_sample_16k.wav"]], inputs=zh_input ) # Update the click function to include the Chinese variant def transcribe_chinese_with_variant(audio_file, variant): return transcribe_chinese(audio_file, variant.lower()) zh_button.click(fn=transcribe_chinese_with_variant, inputs=[zh_input, chinese_variant], outputs=zh_output) # Update feedback submission to include variant def submit_zh_feedback(transcription, rating, audio_path, variant): return save_feedback(transcription, rating, f"Mandarin ({variant})", audio_path) zh_feedback_btn.click( fn=submit_zh_feedback, inputs=[zh_output, zh_rating, zh_input, chinese_variant], outputs=zh_feedback_msg ) with gr.TabItem("Japanese"): with gr.Row(): with gr.Column(): jp_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") jp_button = gr.Button("Transcribe Speech") with gr.Column(): jp_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): jp_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") jp_feedback_btn = gr.Button("Submit Feedback") jp_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_jp_sample_48k.wav"): gr.Examples( examples=[["wav_jp_sample_48k.wav"]], inputs=jp_input ) jp_button.click(fn=transcribe_japanese, inputs=jp_input, outputs=jp_output) # Add feedback submission def submit_jp_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "Japanese", audio_path) jp_feedback_btn.click( fn=submit_jp_feedback, inputs=[jp_output, jp_rating, jp_input], outputs=jp_feedback_msg ) with gr.TabItem("Korean"): with gr.Row(): with gr.Column(): kr_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") kr_button = gr.Button("Transcribe Speech") with gr.Column(): kr_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): kr_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") kr_feedback_btn = gr.Button("Submit Feedback") kr_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_kr_sample_48k.wav"): gr.Examples( examples=[["wav_kr_sample_48k.wav"]], inputs=kr_input ) kr_button.click(fn=transcribe_korean, inputs=kr_input, outputs=kr_output) # Add feedback submission def submit_kr_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "Korean", audio_path) kr_feedback_btn.click( fn=submit_kr_feedback, inputs=[kr_output, kr_rating, kr_input], outputs=kr_feedback_msg ) with gr.TabItem("Thai"): with gr.Row(): with gr.Column(): th_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") th_button = gr.Button("Transcribe Speech") with gr.Column(): th_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): th_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") th_feedback_btn = gr.Button("Submit Feedback") th_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_thai_sample.wav"): gr.Examples( examples=[["wav_thai_sample.wav"]], inputs=th_input ) th_button.click(fn=transcribe_thai, inputs=th_input, outputs=th_output) # Add feedback submission def submit_th_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "Thai", audio_path) th_feedback_btn.click( fn=submit_th_feedback, inputs=[th_output, th_rating, th_input], outputs=th_feedback_msg ) with gr.TabItem("Italian"): with gr.Row(): with gr.Column(): it_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") it_button = gr.Button("Transcribe Speech") with gr.Column(): it_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): it_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") it_feedback_btn = gr.Button("Submit Feedback") it_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_it_sample.wav"): gr.Examples( examples=[["wav_it_sample.wav"]], inputs=it_input ) it_button.click(fn=transcribe_italian, inputs=it_input, outputs=it_output) # Add feedback submission def submit_it_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "Italian", audio_path) it_feedback_btn.click( fn=submit_it_feedback, inputs=[it_output, it_rating, it_input], outputs=it_feedback_msg ) with gr.TabItem("German"): with gr.Row(): with gr.Column(): de_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio") de_button = gr.Button("Transcribe Speech") with gr.Column(): de_output = gr.Textbox(label="Speech Transcription") # Add feedback components with gr.Row(): de_rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the transcription quality (1=worst, 5=best)") de_feedback_btn = gr.Button("Submit Feedback") de_feedback_msg = gr.Textbox(label="Feedback Status", visible=True) # Add example if the file exists if os.path.exists("wav_de_sample.wav"): gr.Examples( examples=[["wav_de_sample.wav"]], inputs=de_input ) de_button.click(fn=transcribe_german, inputs=de_input, outputs=de_output) # Add feedback submission def submit_de_feedback(transcription, rating, audio_path): return save_feedback(transcription, rating, "German", audio_path) de_feedback_btn.click( fn=submit_de_feedback, inputs=[de_output, de_rating, de_input], outputs=de_feedback_msg ) # Launch the app with Hugging Face Spaces compatible settings if __name__ == "__main__": demo.launch(share=False)