nxmwxm commited on
Commit
78a6e5c
·
verified ·
1 Parent(s): 8d538dc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %%writefile app.py
2
+ import streamlit as st
3
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
4
+
5
+ # Load the model and tokenizer
6
+ model = T5ForConditionalGeneration.from_pretrained('/content/fine_tuned_model')
7
+ tokenizer = T5Tokenizer.from_pretrained('/content/fine_tuned_model')
8
+
9
+ def generate_answer(question, distractors):
10
+ input_text = f"Question: {question} Distractors: {' '.join(distractors)}"
11
+ inputs = tokenizer(input_text, return_tensors='pt')
12
+ output = model.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'])
13
+ decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
14
+ return decoded_output
15
+
16
+ st.title('Question Answering Model')
17
+ question = st.text_input('Enter your question:')
18
+ distractors = st.text_input('Enter distractors (comma separated):').split(',')
19
+
20
+ if st.button('Generate Answer'):
21
+ answer = generate_answer(question, distractors)
22
+ st.write('Answer:', answer)