Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit3 | |
# Copyright (c) 2023 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# --------------------------------------------------------' | |
import argparse | |
import datetime | |
import io | |
import json | |
import math | |
import os | |
import time | |
from collections import defaultdict, deque | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.utils import get_state_dict | |
from torch import inf | |
def bool_flag(s): | |
""" | |
Parse boolean arguments from the command line. | |
""" | |
FALSY_STRINGS = {"off", "false", "0"} | |
TRUTHY_STRINGS = {"on", "true", "1"} | |
if s.lower() in FALSY_STRINGS: | |
return False | |
elif s.lower() in TRUTHY_STRINGS: | |
return True | |
else: | |
raise argparse.ArgumentTypeError("invalid value for a boolean flag") | |
class SmoothedValue: | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value, | |
) | |
class MetricLogger: | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if v is None: | |
continue | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'") | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append(f"{name}: {str(meter)}") | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
log_msg = [ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}', | |
] | |
if torch.cuda.is_available(): | |
log_msg.append('max mem: {memory:.0f}') | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB, | |
) | |
) | |
else: | |
print( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
) | |
) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print( | |
'{} Total time: {} ({:.4f} s / it)'.format( | |
header, total_time_str, total_time / len(iterable) | |
) | |
) | |
def _load_checkpoint_for_ema(model_ema, checkpoint): | |
""" | |
Workaround for ModelEma._load_checkpoint to accept an already-loaded object | |
""" | |
mem_file = io.BytesIO() | |
torch.save(checkpoint, mem_file) | |
mem_file.seek(0) | |
model_ema._load_checkpoint(mem_file) | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(*args, **kwargs): | |
if is_main_process(): | |
torch.save(*args, **kwargs) | |
def _get_rank_env(): | |
if "RANK" in os.environ: | |
return int(os.environ["RANK"]) | |
else: | |
return int(os.environ['OMPI_COMM_WORLD_RANK']) | |
def _get_local_rank_env(): | |
if "LOCAL_RANK" in os.environ: | |
return int(os.environ["LOCAL_RANK"]) | |
else: | |
return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
def _get_world_size_env(): | |
if "WORLD_SIZE" in os.environ: | |
return int(os.environ["WORLD_SIZE"]) | |
else: | |
return int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git) | |
def init_distributed_mode(args): | |
if args.dist_on_itp: | |
args.rank = _get_rank_env() | |
args.world_size = _get_world_size_env() # int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
args.gpu = _get_local_rank_env() | |
args.dist_url = "tcp://{}:{}".format(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) | |
os.environ['LOCAL_RANK'] = str(args.gpu) | |
os.environ['RANK'] = str(args.rank) | |
os.environ['WORLD_SIZE'] = str(args.world_size) | |
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
args.gpu = int(os.environ['LOCAL_RANK']) | |
elif 'SLURM_PROCID' in os.environ: | |
args.rank = int(os.environ['SLURM_PROCID']) | |
args.gpu = args.rank % torch.cuda.device_count() | |
else: | |
print('Not using distributed mode') | |
args.distributed = False | |
return | |
args.distributed = True | |
torch.cuda.set_device(args.gpu) | |
args.dist_backend = 'nccl' | |
print( | |
f'| distributed init (rank {args.rank}): {args.dist_url}, gpu {args.gpu}', | |
flush=True, | |
) | |
torch.distributed.init_process_group( | |
backend=args.dist_backend, | |
init_method=args.dist_url, | |
world_size=args.world_size, | |
rank=args.rank, | |
timeout=datetime.timedelta(0, 7200), | |
) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, '_metadata', None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
def load(module, prefix=''): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs | |
) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + '.') | |
load(model, prefix=prefix) | |
warn_missing_keys = [] | |
ignore_missing_keys = [] | |
for key in missing_keys: | |
keep_flag = True | |
for ignore_key in ignore_missing.split('|'): | |
if ignore_key in key: | |
keep_flag = False | |
break | |
if keep_flag: | |
warn_missing_keys.append(key) | |
else: | |
ignore_missing_keys.append(key) | |
missing_keys = warn_missing_keys | |
if len(missing_keys) > 0: | |
print( | |
"Weights of {} not initialized from pretrained model: {}".format( | |
model.__class__.__name__, missing_keys | |
) | |
) | |
if len(unexpected_keys) > 0: | |
print( | |
"Weights from pretrained model not used in {}: {}".format( | |
model.__class__.__name__, unexpected_keys | |
) | |
) | |
if len(ignore_missing_keys) > 0: | |
print( | |
"Ignored weights of {} not initialized from pretrained model: {}".format( | |
model.__class__.__name__, ignore_missing_keys | |
) | |
) | |
if len(error_msgs) > 0: | |
print('\n'.join(error_msgs)) | |
class NativeScalerWithGradNormCount: | |
state_dict_key = "amp_scaler" | |
def __init__(self): | |
self._scaler = torch.cuda.amp.GradScaler() | |
def __call__( | |
self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True | |
): | |
self._scaler.scale(loss).backward(create_graph=create_graph) | |
if update_grad: | |
if clip_grad is not None: | |
assert parameters is not None | |
self._scaler.unscale_( | |
optimizer | |
) # unscale the gradients of optimizer's assigned params in-place | |
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
else: | |
self._scaler.unscale_(optimizer) | |
norm = get_grad_norm_(parameters) | |
self._scaler.step(optimizer) | |
self._scaler.update() | |
else: | |
norm = None | |
return norm | |
def state_dict(self): | |
return self._scaler.state_dict() | |
def load_state_dict(self, state_dict): | |
self._scaler.load_state_dict(state_dict) | |
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = [p for p in parameters if p.grad is not None] | |
norm_type = float(norm_type) | |
if len(parameters) == 0: | |
return torch.tensor(0.0) | |
device = parameters[0].grad.device | |
if norm_type == inf: | |
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
else: | |
total_norm = torch.norm( | |
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), | |
norm_type, | |
) | |
return total_norm | |
def cosine_scheduler( | |
base_value, | |
final_value, | |
epochs, | |
niter_per_ep, | |
warmup_epochs=0, | |
start_warmup_value=0, | |
warmup_steps=-1, | |
sched_type="cos", | |
): | |
warmup_schedule = np.array([]) | |
warmup_iters = warmup_epochs * niter_per_ep | |
if warmup_steps > 0: | |
warmup_iters = warmup_steps | |
print("Set warmup steps = %d" % warmup_iters) | |
if warmup_epochs > 0: | |
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
if sched_type == "cos": | |
iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
schedule = np.array( | |
[ | |
final_value | |
+ 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) | |
for i in iters | |
] | |
) | |
elif sched_type == "linear": | |
schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters) | |
else: | |
raise NotImplementedError() | |
schedule = np.concatenate((warmup_schedule, schedule)) | |
assert len(schedule) == epochs * niter_per_ep | |
return schedule | |
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): | |
output_dir = Path(args.output_dir) | |
if loss_scaler is not None: | |
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)] | |
for checkpoint_path in checkpoint_paths: | |
to_save = { | |
'model': model_without_ddp.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'epoch': epoch, | |
'scaler': loss_scaler.state_dict(), | |
'args': args, | |
} | |
if model_ema is not None: | |
to_save['model_ema'] = get_state_dict(model_ema) | |
save_on_master(to_save, checkpoint_path) | |
else: | |
client_state = {'epoch': epoch, "args": args} | |
if model_ema is not None: | |
client_state['model_ema'] = get_state_dict(model_ema) | |
model.save_checkpoint( | |
save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state | |
) | |
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): | |
output_dir = Path(args.output_dir) | |
if loss_scaler is not None: | |
# torch.amp | |
if args.auto_resume and len(args.resume) == 0: | |
import glob | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) | |
latest_ckpt = -1 | |
for ckpt in all_checkpoints: | |
t = ckpt.split('-')[-1].split('.')[0] | |
if t.isdigit(): | |
latest_ckpt = max(int(t), latest_ckpt) | |
if latest_ckpt >= 0: | |
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) | |
print("Auto resume checkpoint: %s" % args.resume) | |
if args.resume: | |
if args.resume.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.resume, map_location='cpu', check_hash=True | |
) | |
else: | |
checkpoint = torch.load(args.resume, map_location='cpu') | |
model_without_ddp.load_state_dict(checkpoint['model']) | |
print("Resume checkpoint %s" % args.resume) | |
if 'optimizer' in checkpoint and 'epoch' in checkpoint: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
args.start_epoch = checkpoint['epoch'] + 1 | |
if hasattr(args, 'model_ema') and args.model_ema: | |
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) | |
if 'scaler' in checkpoint: | |
loss_scaler.load_state_dict(checkpoint['scaler']) | |
print("With optim & sched!") | |
else: | |
# deepspeed, only support '--auto_resume'. | |
if args.auto_resume: | |
import glob | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) | |
latest_ckpt = -1 | |
for ckpt in all_checkpoints: | |
t = ckpt.split('-')[-1].split('.')[0] | |
if t.isdigit(): | |
latest_ckpt = max(int(t), latest_ckpt) | |
if latest_ckpt >= 0: | |
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) | |
print("Auto resume checkpoint: %d" % latest_ckpt) | |
_, client_states = model.load_checkpoint( | |
args.output_dir, tag='checkpoint-%d' % latest_ckpt | |
) | |
args.start_epoch = client_states['epoch'] + 1 | |
if model_ema is not None: | |
if args.model_ema: | |
_load_checkpoint_for_ema(model_ema, client_states['model_ema']) | |
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git) | |
def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix): | |
if ckpt_path.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
ckpt_path, map_location='cpu', check_hash=True | |
) | |
else: | |
checkpoint = torch.load(ckpt_path, map_location='cpu') | |
print("Load ckpt from %s" % ckpt_path) | |
checkpoint_model = None | |
for model_key in model_key.split('|'): | |
if model_key in checkpoint: | |
checkpoint_model = checkpoint[model_key] | |
print("Load state_dict by model_key = %s" % model_key) | |
break | |
if checkpoint_model is None: | |
checkpoint_model = checkpoint | |
state_dict = model.state_dict() | |
for k in ['head.weight', 'head.bias']: | |
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: | |
print(f"Removing key {k} from pretrained checkpoint") | |
del checkpoint_model[k] | |
# interpolate position embedding | |
for pos_embed_key in ( | |
"vision_pos_embed", | |
"pos_embed", | |
"beit3.encoder.embed_positions.A.weight", | |
): | |
if pos_embed_key in checkpoint_model: | |
pos_embed_checkpoint = checkpoint_model[pos_embed_key] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
if pos_embed_key == "beit3.encoder.embed_positions.A.weight": | |
# being consistent with Fairseq, which starts from 2 for position embedding | |
torchscale_model = True | |
num_patches = model.beit3.vision_embed.num_patches | |
num_extra_tokens = ( | |
model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches | |
) | |
else: | |
torchscale_model = False | |
num_patches = model.patch_embed.num_patches | |
num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches**0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print( | |
"Position interpolate from %dx%d to %dx%d" | |
% (orig_size, orig_size, new_size, new_size) | |
) | |
if torchscale_model: | |
extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0) | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[num_extra_tokens:] | |
else: | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute( | |
0, 3, 1, 2 | |
) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False | |
) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
if torchscale_model: | |
new_pos_embed = new_pos_embed.squeeze(0) | |
checkpoint_model[pos_embed_key] = new_pos_embed | |
load_state_dict(model, checkpoint_model, prefix=model_prefix) | |
def create_ds_config(args): | |
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") | |
with open(args.deepspeed_config, mode="w") as writer: | |
ds_config = { | |
"train_batch_size": args.batch_size * args.update_freq * get_world_size(), | |
"train_micro_batch_size_per_gpu": args.batch_size, | |
"steps_per_print": 1000, | |
"optimizer": { | |
"type": "Adam", | |
"adam_w_mode": True, | |
"params": { | |
"lr": args.lr, | |
"weight_decay": args.weight_decay, | |
"bias_correction": True, | |
"betas": [args.opt_betas[0], args.opt_betas[1]], | |
"eps": args.opt_eps, | |
}, | |
}, | |
"fp16": { | |
"enabled": True, | |
"loss_scale": 0, | |
"initial_scale_power": getattr(args, "initial_scale_power", 12), | |
"loss_scale_window": 1000, | |
"hysteresis": 2, | |
"min_loss_scale": 1, | |
}, | |
"amp": {"enabled": False, "opt_level": "O2"}, | |
} | |
if args.clip_grad is not None: | |
ds_config.update({'gradient_clipping': args.clip_grad}) | |
if args.zero_stage == 1: | |
ds_config.update( | |
{"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}} | |
) | |
elif args.zero_stage > 1: | |
raise NotImplementedError() | |
writer.write(json.dumps(ds_config, indent=2)) | |
def merge_batch_tensors_by_dict_key(batch): | |
batch_tensors = {} | |
for tensor_key in batch[0]: | |
if isinstance(batch[0][tensor_key], torch.Tensor): | |
batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch]) | |
else: | |
batch_tensors[tensor_key] = torch.tensor( | |
[d[tensor_key] for d in batch], dtype=torch.long | |
) | |
return batch_tensors | |
def get_loss_scale_for_deepspeed(model): | |
optimizer = model.optimizer | |
loss_scale = None | |
if hasattr(optimizer, 'loss_scale'): | |
loss_scale = optimizer.loss_scale | |
elif hasattr(optimizer, 'cur_scale'): | |
loss_scale = optimizer.cur_scale | |
return loss_scale | |
class GatherLayer(torch.autograd.Function): | |
""" | |
Gather tensors from all workers with support for backward propagation: | |
This implementation does not cut the gradients as torch.distributed.all_gather does. | |
""" | |
def forward(ctx, x): | |
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] | |
dist.all_gather(output, x) | |
return tuple(output) | |
def backward(ctx, *grads): | |
all_gradients = torch.stack(grads) | |
dist.all_reduce(all_gradients) | |
return all_gradients[dist.get_rank()] | |
def gather_features( | |
image_features, | |
text_features, | |
): | |
gathered_image_features = GatherLayer.apply(image_features) | |
gathered_text_features = GatherLayer.apply(text_features) | |
all_image_features = torch.cat(gathered_image_features) | |
all_text_features = torch.cat(gathered_text_features) | |
return all_image_features, all_text_features | |
# The implementation code is modified from open_clip (https://github.com/mlfoundations/open_clip.git) | |
class ClipLoss(nn.Module): | |
def __init__( | |
self, | |
cache_labels=False, | |
rank=0, | |
world_size=1, | |
): | |
super().__init__() | |
self.cache_labels = cache_labels | |
self.rank = rank | |
self.world_size = world_size | |
# cache state | |
self.prev_num_logits = 0 | |
self.labels = {} | |
def forward(self, image_features, text_features, logit_scale): | |
device = image_features.device | |
if self.world_size > 1: | |
all_image_features, all_text_features = gather_features(image_features, text_features) | |
logits_per_image = logit_scale * image_features @ all_text_features.T | |
logits_per_text = logit_scale * text_features @ all_image_features.T | |
else: | |
logits_per_image = logit_scale * image_features @ text_features.T | |
logits_per_text = logit_scale * text_features @ image_features.T | |
# calculated ground-truth and cache if enabled | |
num_logits = logits_per_image.shape[0] | |
if self.prev_num_logits != num_logits or device not in self.labels: | |
labels = torch.arange(num_logits, device=device, dtype=torch.long) | |
if self.world_size > 1: | |
labels = labels + num_logits * self.rank | |
if self.cache_labels: | |
self.labels[device] = labels | |
self.prev_num_logits = num_logits | |
else: | |
labels = self.labels[device] | |
total_loss = ( | |
F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels) | |
) / 2 | |
return total_loss, logits_per_image, logits_per_text | |
def write_result_to_jsonl(test_stats, result_file): | |
with open(result_file, mode="w", encoding="utf-8") as writer: | |
writer.write(json.dumps(test_stats, indent=None)) | |
def read_result_from_jsonl(result_file): | |
with open(result_file, encoding="utf-8") as reader: | |
return json.load(reader) | |
class BertCaptioningLoss(nn.Module): | |
def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after): | |
super().__init__() | |
self.label_smoothing = label_smoothing | |
self.drop_worst_ratio = drop_worst_ratio | |
self.drop_worst_after = drop_worst_after | |
self.log_soft = nn.LogSoftmax(dim=1) | |
self.kl = nn.KLDivLoss(reduction='none') | |
self.iter = 0 | |
def forward(self, logits, target, iter): | |
eps = self.label_smoothing | |
n_class = logits.size(1) | |
one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1) | |
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) | |
log_prb = self.log_soft(logits) | |
loss = self.kl(log_prb, one_hot).sum(1) | |
if self.drop_worst_ratio > 0 and iter > self.drop_worst_after: | |
loss, _ = torch.topk( | |
loss, k=int(loss.shape[0] * (1 - self.drop_worst_ratio)), largest=False | |
) | |
loss = loss.mean() | |
return loss | |
class BeamHypotheses: | |
def __init__(self, n_hyp, max_length, length_penalty, early_stopping): | |
""" | |
Initialize n-best list of hypotheses. | |
""" | |
self.max_length = max_length - 1 # ignoring bos_token | |
self.length_penalty = length_penalty | |
self.early_stopping = early_stopping | |
self.n_hyp = n_hyp | |
self.hyp = [] | |
self.worst_score = 1e9 | |
def __len__(self): | |
""" | |
Number of hypotheses in the list. | |
""" | |
return len(self.hyp) | |
def add(self, hyp, sum_logprobs): | |
""" | |
Add a new hypothesis to the list. | |
""" | |
score = sum_logprobs / len(hyp) ** self.length_penalty | |
if len(self) < self.n_hyp or score > self.worst_score: | |
self.hyp.append((score, hyp)) | |
if len(self) > self.n_hyp: | |
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)]) | |
del self.hyp[sorted_scores[0][1]] | |
self.worst_score = sorted_scores[1][0] | |
else: | |
self.worst_score = min(score, self.worst_score) | |
def is_done(self, best_sum_logprobs): | |
""" | |
If there are enough hypotheses and that none of the hypotheses being generated | |
can become better than the worst one in the heap, then we are done with this sentence. | |
""" | |
if len(self) < self.n_hyp: | |
return False | |
elif self.early_stopping: | |
return True | |
else: | |
return self.worst_score >= best_sum_logprobs / self.max_length**self.length_penalty | |
def dump_predictions(args, result, file_suffix): | |
global_rank = get_rank() | |
jsons = None | |
if global_rank >= 0: | |
output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json") | |
with open(output_file, "w") as fp: | |
json.dump(result, fp, indent=2) | |
torch.distributed.barrier() | |
if global_rank == 0: | |
world_size = get_world_size() | |
jsons = [] | |
for i in range(world_size): | |
each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json") | |
with open(each_file) as fp: | |
jsons += json.load(fp) | |
new_jsons = [] | |
res_dict = dict() | |
if args.task in ["coco_captioning", "nocaps"]: | |
qid_key = "image_id" | |
else: | |
# for VQAv2 | |
qid_key = "question_id" | |
for item in jsons: | |
if item[qid_key] in res_dict: | |
continue | |
new_jsons.append(item) | |
res_dict[item[qid_key]] = item | |
jsons = new_jsons | |
torch.distributed.barrier() | |
os.remove(output_file) | |
else: | |
jsons = result | |
result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json") | |
if jsons is not None: | |
with open(result_file, "w") as fp: | |
json.dump(jsons, fp, indent=2) | |
print("Infer %d examples into %s" % (len(jsons), result_file)) | |
return result_file | |