# -------------------------------------------------------- # Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) # Github source: https://github.com/microsoft/unilm/tree/master/beit3 # Copyright (c) 2023 Microsoft # Licensed under The MIT License [see LICENSE for details] # --------------------------------------------------------' import math import torch import torch.nn as nn from timm.models.layers import trunc_normal_ as __call_trunc_normal_ from torchscale.architecture.config import EncoderConfig from torchscale.model.BEiT3 import BEiT3 def trunc_normal_(tensor, mean=0.0, std=1.0): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) def _get_base_config( img_size=224, patch_size=16, drop_path_rate=0, checkpoint_activations=None, mlp_ratio=4, vocab_size=64010, **kwargs ): return EncoderConfig( img_size=img_size, patch_size=patch_size, vocab_size=vocab_size, multiway=True, layernorm_embedding=False, normalize_output=True, no_output_layer=True, drop_path_rate=drop_path_rate, encoder_embed_dim=768, encoder_attention_heads=12, encoder_ffn_embed_dim=int(768 * mlp_ratio), encoder_layers=12, checkpoint_activations=checkpoint_activations, ) def _get_large_config( img_size=224, patch_size=16, drop_path_rate=0, checkpoint_activations=None, mlp_ratio=4, vocab_size=64010, **kwargs ): return EncoderConfig( img_size=img_size, patch_size=patch_size, vocab_size=vocab_size, multiway=True, layernorm_embedding=False, normalize_output=True, no_output_layer=True, drop_path_rate=drop_path_rate, encoder_embed_dim=1024, encoder_attention_heads=16, encoder_ffn_embed_dim=int(1024 * mlp_ratio), encoder_layers=24, checkpoint_activations=checkpoint_activations, ) class BEiT3Wrapper(nn.Module): def __init__(self, args, **kwargs): super().__init__() self.args = args self.beit3 = BEiT3(args) self.apply(self._init_weights) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def get_num_layers(self): return self.beit3.encoder.num_layers @torch.jit.ignore def no_weight_decay(self): return { 'pos_embed', 'cls_token', 'beit3.encoder.embed_positions.A.weight', 'beit3.vision_embed.cls_token', 'logit_scale', } def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)