# Using BEiT-3 to get text-vision embedding ## For text embedding 1. Create file ```test_model.py``` inside folder ```itr```. 2. Using the code follow: ``` from beit3_model import Beit3Model if __name__ == '__main__': vlm = Beit3Model(device='cpu') print(vlm.get_embedding('A man who loves a girl.').shape) ``` ## For image embedding 1. Create file ```test_model.py``` inside folder ```itr```. 2. Using the code follow: ``` from beit3_model import Beit3Model from torchvision.datasets.folder import default_loader if __name__ == '__main__': loader = default_loader image = loader('./path/to/your/image.jpg') vlm = Beit3Model(device='cpu') print(vlm.get_embedding(image).shape) ```