atiso-beit3 / src /itr /beit3_model.py
ngxquang
feat: upload BeiT3 API for deployment
6294617
import os
import torch
from functools import lru_cache
from pathlib import Path
from typing import Union
from . import modeling_finetune, utils
from PIL import Image
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.models import create_model
from torchvision import transforms
from transformers import XLMRobertaTokenizer
# Get current workdir of this file
CWD = Path(__file__).parent
print(CWD)
class Preprocess:
def __init__(self, tokenizer):
self.max_len = 64
self.input_size = 384
self.tokenizer = tokenizer
self.transform = transforms.Compose(
[
transforms.Resize((self.input_size, self.input_size), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
self.bos_token_id = tokenizer.bos_token_id
self.eos_token_id = tokenizer.eos_token_id
self.pad_token_id = tokenizer.pad_token_id
def preprocess(self, input: Union[str, Image.Image]):
if isinstance(input, str):
tokens = self.tokenizer.tokenize(input)
tokens = self.tokenizer.convert_tokens_to_ids(tokens)
tokens = [self.bos_token_id] + tokens[:] + [self.eos_token_id]
num_tokens = len(tokens)
padding_mask = [0] * num_tokens + [1] * (self.max_len - num_tokens)
return (
torch.LongTensor(
tokens + [self.pad_token_id] * (self.max_len - num_tokens)
).unsqueeze(0),
torch.Tensor(padding_mask).unsqueeze(0),
num_tokens,
)
elif isinstance(input, Image.Image):
return self.transform(input).unsqueeze(0)
else:
raise Exception("Invalid input type")
class Beit3Model:
def __init__(
self,
model_name: str = "beit3_base_patch16_384_retrieval",
model_path: str = os.path.join(
CWD,
"beit3_model/beit3_base_patch16_384_f30k_retrieval.pth",
),
device: str = "cuda",
):
self._load_model(model_name, model_path, device)
self.device = device
# @lru_cache(maxsize=1)
def _load_model(self, model_name, model_path, device: str = "cpu"):
self.model = create_model(
model_name,
pretrained=False,
drop_path_rate=0.1,
vocab_size=64010,
checkpoint_activations=False,
)
if model_name:
utils.load_model_and_may_interpolate(
model_path, self.model, "model|module", ""
)
self.preprocessor = Preprocess(
XLMRobertaTokenizer(os.path.join(CWD, "beit3_model/beit3.spm"))
)
self.model.to(device)
def get_embedding(self, input: Union[str, Image.Image]):
if isinstance(input, str):
token_ids, padding_mask, _ = self.preprocessor.preprocess(input)
_, vector = self.model(
text_description=token_ids, padding_mask=padding_mask, only_infer=True
)
vector = vector.cpu().detach().numpy().astype("float32")
return vector
elif isinstance(input, Image.Image):
image_input = self.preprocessor.preprocess(input)
image_input = image_input.to(self.device)
vector, _ = self.model(image=image_input, only_infer=True)
return vector
else:
raise Exception("Invalid input type")