Spaces:
Running
Running
nyanko7
commited on
Commit
·
f060dfc
verified
·
0
Parent(s):
Squashed
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +245 -0
- requirements.txt +1 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Text To Anime Arena
|
3 |
+
emoji: 👀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.39.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import time
|
4 |
+
from collections import defaultdict
|
5 |
+
from streamlit_image_select import image_select
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
+
|
11 |
+
description = """
|
12 |
+
# Anime Leaderboard
|
13 |
+
Text to Image (Anime/Illustration) Generation Leaderboard.
|
14 |
+
This leaderboard is just for fun and does not reflect the actual performance of the models.
|
15 |
+
|
16 |
+
## How to Use
|
17 |
+
- Select the image that best reflects the given prompt.
|
18 |
+
- Your selections contribute to the global leaderboard.
|
19 |
+
- View your personal leaderboard after making at least 30 selections.
|
20 |
+
|
21 |
+
## Data
|
22 |
+
- Data Source: [nyanko7/image-samples](https://huggingface.co/datasets/nyanko7/image-samples)
|
23 |
+
- Calling for submissions: [open issue](https://huggingface.co/spaces/nyanko7/text-to-anime-arena/discussions/new) or contact me to submit your model
|
24 |
+
- Warning: Some images may contain NSFW content.
|
25 |
+
"""
|
26 |
+
|
27 |
+
if 'selections' not in st.session_state:
|
28 |
+
st.session_state['selections'] = []
|
29 |
+
if 'selection_count' not in st.session_state:
|
30 |
+
st.session_state['selection_count'] = 0
|
31 |
+
if 'last_pair' not in st.session_state:
|
32 |
+
st.session_state['last_pair'] = None
|
33 |
+
if 'user_id' not in st.session_state:
|
34 |
+
st.session_state['user_id'] = None
|
35 |
+
|
36 |
+
st.sidebar.markdown(description)
|
37 |
+
|
38 |
+
SERVER_URL = os.getenv("W_SERVER") # Replace with your actual server URL
|
39 |
+
|
40 |
+
def get_next_pair():
|
41 |
+
try:
|
42 |
+
response = requests.get(f"{SERVER_URL}/next_pair")
|
43 |
+
if response.status_code == 200:
|
44 |
+
return response.json()
|
45 |
+
else:
|
46 |
+
print(response)
|
47 |
+
st.error("Failed to fetch next pair from server")
|
48 |
+
return None
|
49 |
+
except Exception as e:
|
50 |
+
print(e)
|
51 |
+
st.error("Failed to fetch next pair from server")
|
52 |
+
return None
|
53 |
+
|
54 |
+
if "pair" not in st.session_state:
|
55 |
+
st.session_state["pair"] = get_next_pair()
|
56 |
+
|
57 |
+
def submit_selection(selection_result):
|
58 |
+
headers = {}
|
59 |
+
if st.session_state['user_id']:
|
60 |
+
headers['User-ID'] = st.session_state['user_id']
|
61 |
+
try:
|
62 |
+
response = requests.post(f"{SERVER_URL}/submit_selection", json=selection_result, headers=headers)
|
63 |
+
if response.status_code == 200:
|
64 |
+
response_data = response.json()
|
65 |
+
if 'user_id' in response_data:
|
66 |
+
st.session_state['user_id'] = response_data['user_id']
|
67 |
+
else:
|
68 |
+
st.error(f"Failed to submit selection to server")
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Failed to submit selection to server")
|
71 |
+
|
72 |
+
def get_leaderboard_data():
|
73 |
+
try:
|
74 |
+
response = requests.get(f"{SERVER_URL}/leaderboard")
|
75 |
+
if response.status_code == 200:
|
76 |
+
return response.json()
|
77 |
+
else:
|
78 |
+
st.error("Failed to fetch leaderboard data from server")
|
79 |
+
return None
|
80 |
+
except Exception as e:
|
81 |
+
st.error("Failed to fetch leaderboard data from server")
|
82 |
+
return None
|
83 |
+
|
84 |
+
import io
|
85 |
+
from PIL import Image
|
86 |
+
|
87 |
+
def open_image_from_url(image_url):
|
88 |
+
response = requests.get(image_url, stream=True)
|
89 |
+
response.raise_for_status()
|
90 |
+
return Image.open(io.BytesIO(response.content))
|
91 |
+
|
92 |
+
@st.fragment
|
93 |
+
def arena():
|
94 |
+
pair = st.session_state["pair"]
|
95 |
+
image_url1, model_a = pair["image1"], pair["model_a"]
|
96 |
+
image_url2, model_b = pair["image2"], pair["model_b"]
|
97 |
+
prompt = pair["prompt"]
|
98 |
+
|
99 |
+
st.markdown(f"**Which image best reflects this prompt?**")
|
100 |
+
st.info(
|
101 |
+
f"""
|
102 |
+
Prompt: {prompt}
|
103 |
+
""",
|
104 |
+
icon="⏳",
|
105 |
+
)
|
106 |
+
# read image datafrom url
|
107 |
+
image_a = open_image_from_url(image_url1)
|
108 |
+
image_b = open_image_from_url(image_url2)
|
109 |
+
|
110 |
+
images = [image_a, image_b]
|
111 |
+
models = [model_a, model_b]
|
112 |
+
idx = image_select(
|
113 |
+
label="Select the image you prefer",
|
114 |
+
images=images,
|
115 |
+
index=-1,
|
116 |
+
center=True,
|
117 |
+
height=700,
|
118 |
+
return_value="index"
|
119 |
+
)
|
120 |
+
if st.button("Skip"):
|
121 |
+
st.session_state["pair"] = get_next_pair()
|
122 |
+
st.rerun(scope="fragment")
|
123 |
+
|
124 |
+
if "last_state" in st.session_state and st.session_state["last_state"] is not None:
|
125 |
+
st.markdown(st.session_state["last_state"])
|
126 |
+
|
127 |
+
if idx != -1:
|
128 |
+
selection_result = {
|
129 |
+
"model_a": model_a,
|
130 |
+
"model_b": model_b,
|
131 |
+
"winner": "model_a" if idx == 0 else "model_b",
|
132 |
+
"time": time.time()
|
133 |
+
}
|
134 |
+
st.session_state["selections"].append(selection_result)
|
135 |
+
st.session_state["selection_count"] += 1
|
136 |
+
st.session_state["last_state"] = f"[Selection #{st.session_state['selection_count']}] You selected Image `#{idx+1}` - Model: {models[idx]}"
|
137 |
+
submit_selection(selection_result)
|
138 |
+
st.session_state["pair"] = get_next_pair()
|
139 |
+
st.rerun(scope="fragment")
|
140 |
+
|
141 |
+
@st.fragment
|
142 |
+
def leaderboard():
|
143 |
+
data = get_leaderboard_data()
|
144 |
+
if data is None:
|
145 |
+
return
|
146 |
+
|
147 |
+
st.markdown("## Global Leaderboard")
|
148 |
+
st.markdown("""
|
149 |
+
This leaderboard shows the performance of different models based on user selections.
|
150 |
+
- **Elo Rating**: A relative rating system. Higher scores indicate better performance.
|
151 |
+
- **Win Rate**: The percentage of times a model was chosen when presented.
|
152 |
+
- **#Selections**: Total number of times this model was presented in a pair.
|
153 |
+
""")
|
154 |
+
st.warning("This leaderboard is just for fun and **does not reflect the actual performance of the models.**")
|
155 |
+
|
156 |
+
df = pd.DataFrame(data["leaderboard"])[["Model", "Elo Rating", "Win Rate", "#Selections"]].reset_index(drop=True)
|
157 |
+
st.dataframe(df, hide_index=True)
|
158 |
+
|
159 |
+
@st.fragment
|
160 |
+
def my_leaderboard():
|
161 |
+
if "selections" not in st.session_state or len(st.session_state["selections"]) < 30:
|
162 |
+
st.markdown("Select over 30 images to see your personal leaderboard")
|
163 |
+
uploaded_files = st.file_uploader("Or load your previous selections:", accept_multiple_files=False)
|
164 |
+
if uploaded_files:
|
165 |
+
logs = pd.read_csv(uploaded_files)
|
166 |
+
if "Unnamed: 0" in logs.columns:
|
167 |
+
logs.drop(columns=["Unnamed: 0"], inplace=True)
|
168 |
+
st.session_state["selections"] = logs.to_dict(orient="records")
|
169 |
+
st.rerun()
|
170 |
+
return
|
171 |
+
|
172 |
+
selections = pd.DataFrame(st.session_state["selections"])
|
173 |
+
|
174 |
+
st.markdown("## Personal Leaderboard")
|
175 |
+
st.markdown("""
|
176 |
+
This leaderboard is based on your personal selections.
|
177 |
+
- **Elo Rating**: Calculated from your choices. Higher scores indicate models you prefer.
|
178 |
+
- **Win Rate**: The percentage of times you chose each model when it was presented.
|
179 |
+
- **#Selections**: Number of times you've seen this model in a pair.
|
180 |
+
""")
|
181 |
+
|
182 |
+
elo_ratings = compute_elo(selections.to_dict('records'))
|
183 |
+
win_rates = compute_win_rates(selections.to_dict('records'))
|
184 |
+
selection_counts = compute_selection_counts(selections.to_dict('records'))
|
185 |
+
|
186 |
+
data = []
|
187 |
+
for model in set(selections['model_a'].unique()) | set(selections['model_b'].unique()):
|
188 |
+
data.append({
|
189 |
+
"Model": model,
|
190 |
+
"Elo Rating": round(elo_ratings[model], 2),
|
191 |
+
"Win Rate": f"{win_rates[model]*100:.2f}%",
|
192 |
+
"#Selections": selection_counts[model]
|
193 |
+
})
|
194 |
+
|
195 |
+
df = pd.DataFrame(data)
|
196 |
+
df = df.sort_values("Elo Rating", ascending=False)
|
197 |
+
df = df[["Model", "Elo Rating", "Win Rate", "#Selections"]].reset_index(drop=True)
|
198 |
+
st.dataframe(df, hide_index=True)
|
199 |
+
|
200 |
+
st.markdown("## Your Recent Selections")
|
201 |
+
st.dataframe(selections.tail(20))
|
202 |
+
|
203 |
+
# download data
|
204 |
+
st.download_button('Download your selection data as CSV', selections.to_csv().encode('utf-8'), "my_selections.csv", "text/csv")
|
205 |
+
|
206 |
+
def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
|
207 |
+
rating = defaultdict(lambda: INIT_RATING)
|
208 |
+
for battle in battles:
|
209 |
+
model_a, model_b, winner = battle['model_a'], battle['model_b'], battle['winner']
|
210 |
+
ra, rb = rating[model_a], rating[model_b]
|
211 |
+
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
|
212 |
+
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
|
213 |
+
sa = 1 if winner == "model_a" else 0 if winner == "model_b" else 0.5
|
214 |
+
rating[model_a] += K * (sa - ea)
|
215 |
+
rating[model_b] += K * (1 - sa - eb)
|
216 |
+
return rating
|
217 |
+
|
218 |
+
def compute_win_rates(battles):
|
219 |
+
win_counts = defaultdict(int)
|
220 |
+
battle_counts = defaultdict(int)
|
221 |
+
for battle in battles:
|
222 |
+
model_a, model_b, winner = battle['model_a'], battle['model_b'], battle['winner']
|
223 |
+
if winner == "model_a":
|
224 |
+
win_counts[model_a] += 1
|
225 |
+
elif winner == "model_b":
|
226 |
+
win_counts[model_b] += 1
|
227 |
+
battle_counts[model_a] += 1
|
228 |
+
battle_counts[model_b] += 1
|
229 |
+
return {model: win_counts[model] / battle_counts[model] if battle_counts[model] > 0 else 0
|
230 |
+
for model in set(win_counts.keys()) | set(battle_counts.keys())}
|
231 |
+
|
232 |
+
def compute_selection_counts(battles):
|
233 |
+
selection_counts = defaultdict(int)
|
234 |
+
for battle in battles:
|
235 |
+
selection_counts[battle['model_a']] += 1
|
236 |
+
selection_counts[battle['model_b']] += 1
|
237 |
+
return selection_counts
|
238 |
+
|
239 |
+
pages = [
|
240 |
+
st.Page(arena),
|
241 |
+
st.Page(leaderboard),
|
242 |
+
st.Page(my_leaderboard)
|
243 |
+
]
|
244 |
+
|
245 |
+
st.navigation(pages).run()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://pub-2fdef7a2969f43289c42ac5ae3412fd4.r2.dev/streamlit_image_select-0.6.0-py3-none-any.whl
|