File size: 4,714 Bytes
71f7546 f781a33 71f7546 f781a33 71f7546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import pandas as pd
import pickle
import json
with open('list_col_num.txt', 'r') as file_1:
list_col_num_if = json.load(file_1)
with open('list_col_cat.txt', 'r') as file_2:
list_col_cat_if = json.load(file_2)
with open('model_svc.pkl', 'rb') as file_3:
model_svc = pickle.load(file_3)
def get_trt_index(trt):
if trt == 'ZDV only':
return 0
elif trt == 'ZDV + ddl':
return 1
elif trt == 'ZDV + Zal':
return 2
else:
return 3
def get_yes_no_index(yes_no):
if yes_no == 'no':
return 0
else:
return 1
def get_strat_index(strat):
if strat == 'Antiretroviral Naive':
return 1
elif strat == 'Antiretroviral <= 52 weeks':
return 2
else:
return 3
def get_symptom_index(symptom):
if symptom == 'asymp':
return 0
else:
return 1
def get_treat_index(treat):
if treat == 'ZDV only':
return 0
else:
return 1
def get_race_index(race):
if race == 'White':
return 0
else:
return 1
def get_gender_index(gender):
if gender == 'Female':
return 0
else:
return 1
def get_str2_index(str2):
if str2 == 'naive':
return 0
else:
return 1
def run():
with st.form("prediction_form"):
st.write('Personal Information')
time = st.number_input('Input time to failure or censoring', value=100)
trt = st.selectbox('Select Treatment Indicator ', {'ZDV only','ZDV + ddl','ZDV + Zal','ddl only'},index=0)
age = st.number_input('Input age in years', value=20)
wtkg = st.number_input('Input weight in kg', value=40.0)
hemo = st.selectbox('Is patient has hemophilia ?', {'no','yes'},index=0)
homo = st.selectbox('Is patient has experience do homosexuality activity ?', {'no','yes'},index=0)
drugs = st.selectbox('Is patient has history of IV drug use ?', {'no','yes'},index=0)
karnof = st.number_input('Input Karnofsky score (on scale 0 - 100)', value=40, min_value=0, max_value=100,step=1)
oprior = st.selectbox('Is patient is Non-ZDV antiretroviral therapy pre-175 ?', {'no','yes'},index=0)
z30 = st.selectbox('Is patient is ZDV in the 30 days prior to 175 ?', {'no','yes'},index=0)
preanti = st.number_input('Input days pre-175 anti-retroviral therapy', value=40)
race = st.selectbox('Input patient race ?', {'White','non-white'},index=0)
gender = st.selectbox('Select gender ?', {'Female','Male'},index=0)
str2 = st.selectbox('Input antiretroviral history', {'naive','experienced'},index=0)
strat = st.selectbox('Input antiretroviral history stratification', {'Antiretroviral Naive','Antiretroviral <= 52 weeks','Antiretroviral > 52 weeks'},index=0)
symptom = st.selectbox('Input symptomatic indicator', {'asymp','symp'},index=0)
treat = st.selectbox('Input treatment indicator ', {'ZDV only','others'},index=0)
offtrt = st.selectbox('Input indicator of off-trt before 96+/-5 weeks ', {'no','yes'},index=0)
cd40 = st.number_input('Input CD4', value=40.0)
cd420 = st.number_input('Input CD4 at 20+/-5 weeks', value=40.0)
cd80 = st.number_input('Input CD8', value=40.0)
cd820 = st.number_input('Input CD8 at 20+/-5 weeks', value=40.0)
submitted = st.form_submit_button("Submit")
st.write("Outside the form")
data_inf = {
'time': time,
'trt' : get_trt_index(trt),
'age': age,
'wtkg': wtkg,
'hemo': get_yes_no_index(hemo),
'homo': get_yes_no_index(homo),
'drugs': get_yes_no_index(drugs),
'karnof': karnof,
'oprior': get_yes_no_index(oprior),
'z30': get_yes_no_index(z30),
'preanti': preanti,
'race': get_race_index(race),
'gender': get_gender_index(gender),
'str2': get_str2_index(str2),
'strat': get_strat_index(strat),
'symptom': get_symptom_index(symptom),
'treat': get_treat_index(treat),
'offtrt': get_yes_no_index(offtrt),
'cd40':cd40,
'cd420':cd420,
'cd80':cd80,
'cd820':cd820
}
if submitted:
df = pd.DataFrame([data_inf])
df[list_col_cat_if] = df[list_col_cat_if].astype(object)
df = df[list_col_cat_if + list_col_num_if]
# Do model predict from data input
predict_result = model_svc.predict(df)
if predict_result[0] == 1 :
predic_result_value = 'yes'
else:
predic_result_value = 'no'
st.write(f'## Is patient infected AIDS: {predic_result_value}')
if __name__ == '__main__':
run() |