Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +10 -0
- eda.py +56 -0
- model_svr.pkl +3 -0
- predict.py +57 -0
- requirement.txt +7 -0
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import predict
|
4 |
+
|
5 |
+
navigation = st.slidebar.selectbox('Pilih Halaman:', {'EDA':'Predict'})
|
6 |
+
|
7 |
+
if navigation == 'EDA':
|
8 |
+
eda.run()
|
9 |
+
else:
|
10 |
+
predict.run()
|
eda.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title = 'FIFA 2022 - EDA',
|
9 |
+
layout = 'wide',
|
10 |
+
initial_sidebar_state = 'expanded'
|
11 |
+
)
|
12 |
+
|
13 |
+
def run():
|
14 |
+
st.title("FIFA 2022 Player Rating Prediction")
|
15 |
+
|
16 |
+
st.subheader('EDA untuk Analisis Dataset FIFA 2022')
|
17 |
+
|
18 |
+
st.image('https://e2e85xpajrr.exactdn.com/wp-content/uploads/2022/09/21190008/shutterstock_2190840355-scaled.jpg?strip=all&lossy=1&ssl=1',
|
19 |
+
caption='World Cup Champion')
|
20 |
+
|
21 |
+
st.write('Page ini dibuat oleh Vincent')
|
22 |
+
st.write('# Head')
|
23 |
+
st.write('## SubHeader')
|
24 |
+
st.write('### SubsubHeader')
|
25 |
+
|
26 |
+
st.markdown('---')
|
27 |
+
|
28 |
+
'''
|
29 |
+
Pada page ini, penulis akan melakukan eksplorasi sederhana, Dataset yang digunakan adalah dataset FIFA 2022.
|
30 |
+
Dataset ini berasal dari web [sofia.com](www.google.com)
|
31 |
+
'''
|
32 |
+
|
33 |
+
# Show dataframe
|
34 |
+
df = pd.read_csv('https://raw.githubusercontent.com/FTDS-learning-materials/phase-1/master/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
|
35 |
+
st.dataframe(df)
|
36 |
+
|
37 |
+
st.write('### Plot AttackingWorkRate')
|
38 |
+
fig = plt.figure(figsize=(15,5))
|
39 |
+
sns.countplot(x= 'AttackingWorkRate', data=df)
|
40 |
+
st.pyplot(fig)
|
41 |
+
|
42 |
+
# Membuat histogram berdasarkan input user
|
43 |
+
st.write(' ### Histogram berdasarkan pilihan-mu')
|
44 |
+
pilihan = st.selectbox('Pilih feature: ',('Age','Height','Weight'))
|
45 |
+
fig = plt.figure(figsize= (15,5))
|
46 |
+
sns.histplot(df[pilihan], bins = 30, kde = True)
|
47 |
+
st.pyplot(fig)
|
48 |
+
|
49 |
+
# Membuat plotlt plot
|
50 |
+
st.write('### Plot antara ValueEur dengan Price')
|
51 |
+
fig = px.scatter(df,x='ValueEUR',y='Overall', hover_data=['Name','Age'])
|
52 |
+
st.plotly_chart(fig)
|
53 |
+
|
54 |
+
if __name__ == '__main__':
|
55 |
+
run()
|
56 |
+
|
model_svr.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b675bcdf0b49515c8d6d6b211db0f270dd85bcbf079ea8e6c1da1ef28a7cd5f
|
3 |
+
size 1579177
|
predict.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
with open('model_svr.pkl', 'rb') as file_6:
|
6 |
+
model = pickle.load(file_6)
|
7 |
+
|
8 |
+
def run():
|
9 |
+
with st.form("my_form"):
|
10 |
+
|
11 |
+
nama = st.text_input('masukan nama player', value='nama')
|
12 |
+
age = st.number_input('masukan usia player', min_value=15, max_value= 40, value=20)
|
13 |
+
height = st.slider('Height',50, 250, 170)
|
14 |
+
weight = st.number_input('Weight',50,100,70)
|
15 |
+
price = st.number_input('Price',0,1000000,10000, help="Harga Pemain dalam euro " )
|
16 |
+
# Every form must have a submit button.
|
17 |
+
st.write('-'*50)
|
18 |
+
attack = st.selectbox('Attacking Work Rate', {'Low','Medium','High'},index=1)
|
19 |
+
defense = st.radio('Defensive Work Rate', {'Low','Medium','High'},index=1)
|
20 |
+
st.markdown('---')
|
21 |
+
|
22 |
+
pace = st.number_input('Pace',0,100,50)
|
23 |
+
shoot = st.number_input('Shoot',0,100,50)
|
24 |
+
passing = st.number_input('Passing',0,100,50)
|
25 |
+
dribble = st.number_input('Dribble',0,100,50)
|
26 |
+
defend = st.number_input('Defend',0,100,50)
|
27 |
+
physicality = st.number_input('Physicality',0,100,50)
|
28 |
+
submitted = st.form_submit_button("Submit")
|
29 |
+
|
30 |
+
st.write("Outside the form")
|
31 |
+
|
32 |
+
data_inf = {
|
33 |
+
'Name': nama,
|
34 |
+
'Age' : age,
|
35 |
+
'Height' : height,
|
36 |
+
'Weight' : weight,
|
37 |
+
'Price' : price,
|
38 |
+
'AttackingWorkRate': attack,
|
39 |
+
'DefensiveWorkRate': defense,
|
40 |
+
'PaceTotal': pace,
|
41 |
+
'ShootingTotal': shoot,
|
42 |
+
'PassingTotal': passing,
|
43 |
+
'DribblingTotal': dribble,
|
44 |
+
'DefendingTotal': defend,
|
45 |
+
'PhysicalityTotal': physicality
|
46 |
+
}
|
47 |
+
|
48 |
+
data_inf = pd.DataFrame([data_inf])
|
49 |
+
|
50 |
+
if submitted:
|
51 |
+
result= model.predict(data_inf)
|
52 |
+
st.write(f'## Player Rating: {round(result[0])}')
|
53 |
+
st.balloons()
|
54 |
+
st.snow()
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
+
run()
|
requirement.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
seaborn
|
4 |
+
matplotlib
|
5 |
+
numpy
|
6 |
+
scikit-learn==1.3.0
|
7 |
+
plotyly
|