nyoo827 commited on
Commit
db79a7f
ยท
1 Parent(s): 1e4267b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -171
app.py DELETED
@@ -1,171 +0,0 @@
1
- import streamlit as st
2
- from dotenv import load_dotenv
3
- from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
4
- from langchain.vectorstores import FAISS
5
- from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
6
- from langchain.memory import ConversationBufferMemory
7
- from langchain.chains import ConversationalRetrievalChain
8
- from htmlTemplates import css, bot_template, user_template
9
- from langchain.llms import LlamaCpp # For loading transformer models.
10
- from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
11
- import tempfile # ์ž„์‹œ ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค.
12
- import os
13
- from huggingface_hub import hf_hub_download # Hugging Face Hub์—์„œ ๋ชจ๋ธ์„ ๋‹ค์šด๋กœ๋“œํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
14
-
15
- # PDF ๋ฌธ์„œ๋กœ๋ถ€ํ„ฐ ํ…์ŠคํŠธ๋ฅผ ์ถ”์ถœํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
16
- def get_pdf_text(pdf_docs):
17
- temp_dir = tempfile.TemporaryDirectory() # ์ž„์‹œ ๋””๋ ‰ํ† ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
18
- temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # ์ž„์‹œ ํŒŒ์ผ ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
19
- with open(temp_filepath, "wb") as f: # ์ž„์‹œ ํŒŒ์ผ์„ ๋ฐ”์ด๋„ˆ๋ฆฌ ์“ฐ๊ธฐ ๋ชจ๋“œ๋กœ ์—ฝ๋‹ˆ๋‹ค.
20
- f.write(pdf_docs.getvalue()) # PDF ๋ฌธ์„œ์˜ ๋‚ด์šฉ์„ ์ž„์‹œ ํŒŒ์ผ์— ์”๋‹ˆ๋‹ค.
21
- pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoader๋ฅผ ์‚ฌ์šฉํ•ด PDF๋ฅผ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
22
- pdf_doc = pdf_loader.load() # ํ…์ŠคํŠธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
23
- return pdf_doc # ์ถ”์ถœํ•œ ํ…์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
24
-
25
- # ๊ณผ์ œ
26
- # ์•„๋ž˜ ํ…์ŠคํŠธ ์ถ”์ถœ ํ•จ์ˆ˜๋ฅผ ์ž‘์„ฑ
27
- def get_text_file(text_docs):
28
- text_data = []
29
- for doc in docs:
30
- if doc.lower().endswith('.txt'):
31
- with open(doc, 'r', encoding='utf-8') as file:
32
- text = file.read()
33
- text_data.append(text)
34
- return text_data
35
-
36
- def get_csv_file(csv_docs):
37
- csv_data = []
38
- for doc in docs:
39
- if doc.lower().endswith('.csv'):
40
- with open(doc, 'r', newline='', encoding='utf-8') as file:
41
- csv_reader = csv.reader(file)
42
- data = [row for row in csv_reader]
43
- csv_data.append(data)
44
- return csv_data
45
-
46
- def get_json_file(json_docs):
47
- json_data = []
48
- for doc in docs:
49
- if doc.lower().endswith('.json'):
50
- with open(doc, 'r', encoding='utf-8') as file:
51
- data = json.load(file)
52
- json_data.append(data)
53
- return json_data
54
-
55
-
56
- # ๋ฌธ์„œ๋“ค์„ ์ฒ˜๋ฆฌํ•˜์—ฌ ํ…์ŠคํŠธ ์ฒญํฌ๋กœ ๋‚˜๋ˆ„๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
57
- def get_text_chunks(documents):
58
- text_splitter = RecursiveCharacterTextSplitter(
59
- chunk_size=1000, # ์ฒญํฌ์˜ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
60
- chunk_overlap=200, # ์ฒญํฌ ์‚ฌ์ด์˜ ์ค‘๋ณต์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
61
- length_function=len # ํ…์ŠคํŠธ์˜ ๊ธธ์ด๋ฅผ ์ธก์ •ํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
62
- )
63
-
64
- documents = text_splitter.split_documents(documents) # ๋ฌธ์„œ๋“ค์„ ์ฒญํฌ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.
65
- return documents # ๋‚˜๋ˆˆ ์ฒญํฌ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
66
-
67
-
68
- # ํ…์ŠคํŠธ ์ฒญํฌ๋“ค๋กœ๋ถ€ํ„ฐ ๋ฒกํ„ฐ ์Šคํ† ์–ด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
69
- def get_vectorstore(text_chunks):
70
- # ์›ํ•˜๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
71
- embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
72
- model_kwargs={'device': 'cpu'}) # ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
73
- vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS ๋ฒกํ„ฐ ์Šคํ† ์–ด๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
74
- return vectorstore # ์ƒ์„ฑ๋œ ๋ฒกํ„ฐ ์Šคํ† ์–ด๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
75
-
76
-
77
- def get_conversation_chain(vectorstore):
78
- model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
79
- model_basename = 'llama-2-7b-chat.Q2_K.gguf'
80
- model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
81
-
82
- llm = LlamaCpp(model_path=model_path,
83
- n_ctx=4086,
84
- input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
85
- verbose=True, )
86
- # ๋Œ€ํ™” ๊ธฐ๋ก์„ ์ €์žฅํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
87
- memory = ConversationBufferMemory(
88
- memory_key='chat_history', return_messages=True)
89
- # ๋Œ€ํ™” ๊ฒ€์ƒ‰ ์ฒด์ธ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
90
- conversation_chain = ConversationalRetrievalChain.from_llm(
91
- llm=llm,
92
- retriever=vectorstore.as_retriever(),
93
- memory=memory
94
- )
95
- return conversation_chain # ์ƒ์„ฑ๋œ ๋Œ€ํ™” ์ฒด์ธ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
96
-
97
- # ์‚ฌ์šฉ์ž ์ž…๋ ฅ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
98
- def handle_userinput(user_question):
99
- #print('user_question => ', user_question)
100
-
101
- # ๋Œ€ํ™” ์ฒด์ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์งˆ๋ฌธ์— ๋Œ€ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
102
- st.session_state.conversation = {'question': user_question}
103
-
104
- #st.session_state.chat_history = response['chat_history']
105
- #response = st.session_state.conversation
106
-
107
- if 'chat_history' in st.session_state.conversation:
108
- st.session_state.chat_history = st.session_state.conversation['chat_history']
109
- for i, message in enumerate(st.session_state.chat_history):
110
- if i % 2 == 0:
111
- st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
112
- else:
113
- st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
114
- else:
115
- # chat_history๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์˜ˆ์™ธ ์ฒ˜๋ฆฌ ๋˜๋Š” ๊ธฐ๋ณธ๊ฐ’ ์„ค์ •
116
- st.session_state.chat_history = [] # ์˜ˆ์‹œ๋กœ ๋นˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
117
- st.warning("Chat history not found or empty.")
118
-
119
- def main():
120
- load_dotenv()
121
- st.set_page_config(page_title="Chat with multiple Files",
122
- page_icon=":books:")
123
- st.write(css, unsafe_allow_html=True)
124
-
125
- if "conversation" not in st.session_state:
126
- st.session_state.conversation = None
127
- if "chat_history" not in st.session_state:
128
- st.session_state.chat_history = None
129
-
130
- st.header("Chat with multiple Files:")
131
- user_question = st.text_input("Ask a question about your documents:")
132
- if user_question:
133
- handle_userinput(user_question)
134
-
135
- with st.sidebar:
136
- st.subheader("Your documents")
137
- docs = st.file_uploader(
138
- "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
139
- if st.button("Process"):
140
- with st.spinner("Processing"):
141
- # get pdf text
142
- doc_list = []
143
-
144
- for file in docs:
145
- print('file - type : ', file.type)
146
- if file.type == 'text/plain':
147
- # file is .txt
148
- doc_list.extend(get_text_file(file))
149
- elif file.type in ['application/octet-stream', 'application/pdf']:
150
- # file is .pdf
151
- doc_list.extend(get_pdf_text(file))
152
- elif file.type == 'text/csv':
153
- # file is .csv
154
- doc_list.extend(get_csv_file(file))
155
- elif file.type == 'application/json':
156
- # file is .json
157
- doc_list.extend(get_json_file(file))
158
-
159
- # get the text chunks
160
- text_chunks = get_text_chunks(doc_list)
161
-
162
- # create vector store
163
- vectorstore = get_vectorstore(text_chunks)
164
-
165
- # create conversation chain
166
- st.session_state.conversation = get_conversation_chain(
167
- vectorstore)
168
-
169
-
170
- if __name__ == '__main__':
171
- main()