Arnav Chavan commited on
Commit
c113723
·
1 Parent(s): abb9e2b

add mmlu acc

Browse files
dataset/llm-perf-leaderboard-Raspberry Pi 5(8GB).csv CHANGED
@@ -1,129 +1,129 @@
1
- Model,Quantization,Params (B),Model Size (GB),Prefill (tokens/s),Decode (tokens/s),Backend
2
- gemma-2-9b,Q8_0,10.159,10.796,2.169,0.012,llama_cpp
3
- DeepSeek-V2-Lite,Q4_K_M,15.706,10.36,4.304,1.764,llama_cpp
4
- aya-expanse-8b,Q8_0,9.077,9.644,3.1,0.027,llama_cpp
5
- aya-23-8b,Q8_0,9.077,9.644,3.174,0.027,llama_cpp
6
- Yi-1.5-9B,Q8_0,8.829,9.382,2.585,0.019,llama_cpp
7
- Qwen2.5-14B,Q4_K_M,14.77,8.982,1.916,0.018,llama_cpp
8
- DeepSeek-V2-Lite,Q4_0_4_4,15.706,8.901,7.788,3.867,llama_cpp
9
- Phi-3-medium-128k-instruct,Q4_K_M,13.96,8.566,1.819,0.02,llama_cpp
10
- Hermes-3-Llama-3.1-8B,Q8_0,8.03,8.533,3.286,0.922,llama_cpp
11
- Qwen2.5-14B,Q4_0_4_4,14.77,8.512,4.698,0.028,llama_cpp
12
- internlm2_5-7b-chat,Q8_0,7.738,8.222,3.258,1.238,llama_cpp
13
- dolphin-2.9.2-qwen2-7b,Q8_0,7.616,8.093,4.241,1.301,llama_cpp
14
- Qwen2.5-7B,Q8_0,7.616,8.093,4.253,1.302,llama_cpp
15
- Phi-3-medium-128k-instruct,Q4_0_4_4,13.96,7.896,4.715,0.038,llama_cpp
16
- NexusRaven-V2-13B,Q4_K_M,13.016,7.865,2.066,0.035,llama_cpp
17
- Mistral-7B-Instruct-v0.3,Q8_0,7.248,7.702,4.104,1.29,llama_cpp
18
- dolphin-2.9.3-mistral-7B-32k,Q8_0,7.248,7.702,4.135,1.294,llama_cpp
19
- Yarn-Mistral-7b-128k,Q8_0,7.242,7.695,4.082,1.292,llama_cpp
20
- Starling-LM-7B-beta,Q8_0,7.242,7.695,4.132,1.296,llama_cpp
21
- Mistral-Nemo-Base-2407,Q4_K_M,12.248,7.469,2.453,1.358,llama_cpp
22
- NexusRaven-V2-13B,Q4_0_4_4,13.016,7.365,4.979,1.348,llama_cpp
23
- OLMoE-1B-7B-0924,Q8_0,6.919,7.358,26.942,7.489,llama_cpp
24
- OLMo-7B-0724-hf,Q8_0,6.888,7.319,4.515,1.371,llama_cpp
25
- mpt-7b-instruct,Q8_0,6.856,7.285,4.287,1.367,llama_cpp
26
- Amber,Q8_0,6.738,7.16,4.442,1.373,llama_cpp
27
- Mistral-Nemo-Base-2407,Q4_0_4_4,12.248,7.064,9.103,1.48,llama_cpp
28
- gemma-2-9b,Q4_K_M,10.159,6.508,3.531,1.629,llama_cpp
29
- Yarn-Solar-10b-64k,Q4_K_M,10.732,6.461,2.905,1.503,llama_cpp
30
- SOLAR-10.7B-v1.0,Q4_K_M,10.732,6.461,2.925,1.505,llama_cpp
31
- SOLAR-10.7B-Instruct-v1.0,Q4_K_M,10.732,6.461,2.916,1.506,llama_cpp
32
- Yi-1.5-6B,Q8_0,6.061,6.441,5.269,1.584,llama_cpp
33
- gemma-2-9b,Q4_0_4_4,10.159,6.19,10.553,1.757,llama_cpp
34
- SOLAR-10.7B-v1.0,Q4_0_4_4,10.732,6.072,9.315,1.635,llama_cpp
35
- SOLAR-10.7B-Instruct-v1.0,Q4_0_4_4,10.732,6.072,9.332,1.635,llama_cpp
36
- Yarn-Solar-10b-64k,Q4_0_4_4,10.732,6.072,9.352,1.638,llama_cpp
37
- aya-expanse-8b,Q4_K_M,9.077,5.906,4.406,1.911,llama_cpp
38
- aya-23-8B,Q4_K_M,9.077,5.906,4.428,1.914,llama_cpp
39
- aya-expanse-8b,Q4_0_4_4,9.077,5.647,14.074,2.05,llama_cpp
40
- aya-23-8B,Q4_0_4_4,9.077,5.647,14.113,2.051,llama_cpp
41
- Yi-1.5-9B,Q4_K_M,8.829,5.327,3.681,1.85,llama_cpp
42
- Yi-1.5-9B,Q4_0_4_4,8.829,5.035,11.33,2.0,llama_cpp
43
- Hermes-3-Llama-3.1-8B,Q4_K_M,8.03,4.913,4.375,2.078,llama_cpp
44
- Llama-3.1-8B,Q4_K_M,8.03,4.913,4.403,2.086,llama_cpp
45
- internlm2_5-7b-chat,Q4_K_M,7.738,4.711,4.4,2.133,llama_cpp
46
- Qwen2.5-7B,Q4_K_M,7.616,4.677,4.769,2.201,llama_cpp
47
- dolphin-2.9.2-qwen2-7b,Q4_K_M,7.616,4.677,4.759,2.204,llama_cpp
48
- Llama-3.1-8B,Q4_0_4_4,8.03,4.653,13.99,2.245,llama_cpp
49
- Hermes-3-Llama-3.1-8B,Q4_0_4_4,8.03,4.653,14.006,2.245,llama_cpp
50
- internlm2_5-7b-chat,Q4_0_4_4,7.738,4.451,14.036,2.31,llama_cpp
51
- mpt-7b-instruct,Q4_K_M,6.856,4.442,4.162,2.213,llama_cpp
52
- Qwen2.5-7B,Q4_0_4_4,7.616,4.425,15.563,2.386,llama_cpp
53
- dolphin-2.9.2-qwen2-7b,Q4_0_4_4,7.616,4.425,15.58,2.387,llama_cpp
54
- dolphin-2.9.3-mistral-7B-32k,Q4_K_M,7.248,4.372,4.387,2.227,llama_cpp
55
- Mistral-7B-Instruct-v0.3,Q4_K_M,7.248,4.372,4.462,2.241,llama_cpp
56
- Starling-LM-7B-beta,Q4_K_M,7.242,4.368,4.406,2.234,llama_cpp
57
- Yarn-Mistral-7b-128k,Q4_K_M,7.242,4.368,4.434,2.245,llama_cpp
58
- OLMoE-1B-7B-0924,Q4_K_M,6.919,4.212,26.902,12.119,llama_cpp
59
- OLMo-7B-0724-hf,Q4_K_M,6.888,4.183,4.706,2.339,llama_cpp
60
- dolphin-2.9.3-mistral-7B-32k,Q4_0_4_4,7.248,4.113,14.053,2.427,llama_cpp
61
- Mistral-7B-Instruct-v0.3,Q4_0_4_4,7.248,4.113,14.177,2.43,llama_cpp
62
- Starling-LM-7B-beta,Q4_0_4_4,7.242,4.108,14.068,2.427,llama_cpp
63
- Yarn-Mistral-7b-128k,Q4_0_4_4,7.242,4.108,14.139,2.436,llama_cpp
64
- Amber,Q4_K_M,6.738,4.08,4.594,2.351,llama_cpp
65
- Phi-3.5-mini-instruct,Q8_0,3.821,4.06,7.951,2.423,llama_cpp
66
- Phi-3-mini-128k-instruct,Q8_0,3.821,4.06,7.947,2.426,llama_cpp
67
- mpt-7b-instruct,Q4_0_4_4,6.856,3.964,14.569,2.533,llama_cpp
68
- OLMoE-1B-7B-0924,Q4_0_4_4,6.919,3.926,50.413,12.989,llama_cpp
69
- Llama-3.2-3B,Q8_0,3.607,3.833,10.31,2.83,llama_cpp
70
- Amber,Q4_0_4_4,6.738,3.825,14.442,2.57,llama_cpp
71
- Yi-1.5-6B,Q4_K_M,6.061,3.672,5.58,2.72,llama_cpp
72
- Qwen2.5-3B,Q8_0,3.397,3.61,10.473,2.939,llama_cpp
73
- Yi-1.5-6B,Q4_0_4_4,6.061,3.478,17.017,2.945,llama_cpp
74
- dolphin-2.9.4-gemma2-2b,Q8_0,3.204,3.405,13.966,3.381,llama_cpp
75
- gemma-2-2b,Q8_0,3.204,3.405,13.996,3.385,llama_cpp
76
- stable-code-instruct-3b,Q8_0,2.795,2.971,10.668,3.316,llama_cpp
77
- Phi-3.5-mini-instruct,Q4_K_M,3.821,2.393,7.502,3.936,llama_cpp
78
- Phi-3-mini-128k-instruct,Q4_K_M,3.821,2.393,7.519,3.938,llama_cpp
79
- Llama-3.2-3B,Q4_K_M,3.607,2.335,10.691,4.674,llama_cpp
80
- Llama-3.2-3B,Q4_0_4_4,3.607,2.233,31.72,5.025,llama_cpp
81
- gemma-2-2b,Q4_K_M,3.204,2.186,14.202,5.253,llama_cpp
82
- dolphin-2.9.4-gemma2-2b,Q4_K_M,3.204,2.186,14.218,5.253,llama_cpp
83
- Qwen2.5-3B,Q4_K_M,3.397,2.179,10.638,4.808,llama_cpp
84
- Phi-3.5-mini-instruct,Q4_0_4_4,3.821,2.175,23.369,4.428,llama_cpp
85
- Phi-3-mini-128k-instruct,Q4_0_4_4,3.821,2.175,23.461,4.436,llama_cpp
86
- gemma-2-2b,Q4_0_4_4,3.204,2.107,40.616,5.552,llama_cpp
87
- dolphin-2.9.4-gemma2-2b,Q4_0_4_4,3.204,2.107,40.977,5.58,llama_cpp
88
- Qwen2.5-3B,Q4_0_4_4,3.397,2.072,32.434,5.239,llama_cpp
89
- internlm2_5-1_8b-chat,Q8_0,1.889,2.007,19.329,5.279,llama_cpp
90
- SmolLM2-1.7B-Instruct,Q8_0,1.812,1.926,17.524,5.177,llama_cpp
91
- Qwen2.5-1.5B,Q8_0,1.777,1.889,21.927,5.793,llama_cpp
92
- stable-code-instruct-3b,Q4_K_M,2.795,1.707,10.803,5.564,llama_cpp
93
- stable-code-instruct-3b,Q4_0_4_4,2.795,1.607,28.926,5.957,llama_cpp
94
- Llama-3.2-1B,Q8_0,1.498,1.592,29.722,7.295,llama_cpp
95
- Yi-Coder-1.5B,Q8_0,1.476,1.569,23.894,6.596,llama_cpp
96
- OLMo-1B-0724-hf,Q8_0,1.28,1.36,27.787,7.591,llama_cpp
97
- Qwen2.5-1.5B,Q4_K_M,1.777,1.172,22.326,9.56,llama_cpp
98
- internlm2_5-1_8b-chat,Q4_K_M,1.889,1.17,19.453,8.56,llama_cpp
99
- TinyLlama-1.1B-Chat-v1.0,Q8_0,1.1,1.169,28.472,8.637,llama_cpp
100
- TinyLlama_v1.1,Q8_0,1.1,1.169,28.538,8.652,llama_cpp
101
- SmolLM2-1.7B-Instruct,Q4_K_M,1.812,1.136,17.72,8.497,llama_cpp
102
- Qwen2.5-1.5B,Q4_0_4_4,1.777,1.12,65.915,10.128,llama_cpp
103
- internlm2_5-1_8b-chat,Q4_0_4_4,1.889,1.112,57.736,9.243,llama_cpp
104
- SmolLM2-1.7B-Instruct,Q4_0_4_4,1.812,1.072,50.27,9.239,llama_cpp
105
- Llama-3.2-1B,Q4_K_M,1.498,1.015,30.451,11.51,llama_cpp
106
- Llama-3.2-1B,Q4_0_4_4,1.498,0.979,86.772,12.364,llama_cpp
107
- Yi-Coder-1.5B,Q4_K_M,1.476,0.962,23.267,10.03,llama_cpp
108
- Yi-Coder-1.5B,Q4_0_4_4,1.476,0.865,67.713,11.422,llama_cpp
109
- OLMo-1B-0724-hf,Q4_K_M,1.28,0.79,28.276,12.321,llama_cpp
110
- OLMo-1B-0724-hf,Q4_0_4_4,1.28,0.746,84.882,13.339,llama_cpp
111
- Qwen2.5-0.5B,Q8_0,0.63,0.67,75.456,18.06,llama_cpp
112
- TinyLlama-1.1B-Chat-v1.0,Q4_K_M,1.1,0.667,29.44,14.305,llama_cpp
113
- TinyLlama_v1.1,Q4_K_M,1.1,0.667,29.397,14.346,llama_cpp
114
- TinyLlama-1.1B-Chat-v1.0,Q4_0_4_4,1.1,0.636,77.823,15.509,llama_cpp
115
- TinyLlama_v1.1,Q4_0_4_4,1.1,0.636,77.943,15.543,llama_cpp
116
- Qwen2.5-0.5B,Q4_K_M,0.63,0.537,52.916,22.324,llama_cpp
117
- Qwen2.5-0.5B,Q4_0_4_4,0.63,0.491,189.874,26.738,llama_cpp
118
- gpt2-medium,Q8_0,0.406,0.436,83.423,23.016,llama_cpp
119
- SmolLM2-360M-Instruct,Q8_0,0.409,0.435,79.518,22.857,llama_cpp
120
- SmolLM2-360M-Instruct,Q4_K_M,0.409,0.319,55.774,30.718,llama_cpp
121
- SmolLM2-360M-Instruct,Q4_0_4_4,0.409,0.277,173.275,37.176,llama_cpp
122
- gpt2-medium,Q4_K_M,0.406,0.269,73.615,33.913,llama_cpp
123
- gpt2-medium,Q4_0_4_4,0.406,0.247,178.73,37.89,llama_cpp
124
- gpt2,Q8_0,0.163,0.176,302.932,68.191,llama_cpp
125
- SmolLM2-135M-Instruct,Q8_0,0.163,0.173,212.146,57.992,llama_cpp
126
- SmolLM2-135M-Instruct,Q4_K_M,0.163,0.134,153.439,73.272,llama_cpp
127
- SmolLM2-135M-Instruct,Q4_0_4_4,0.163,0.12,381.667,86.735,llama_cpp
128
- gpt2,Q4_K_M,0.163,0.111,269.906,92.707,llama_cpp
129
- gpt2,Q4_0_4_4,0.163,0.105,582.32,101.509,llama_cpp
 
1
+ Model,Quantization,Params (B),Model Size (GB),Prefill (tokens/s),Decode (tokens/s),Backend,MMLU Accuracy
2
+ gemma-2-9b,Q8_0,10.159,10.796,2.169,0.012,llama_cpp,42.365
3
+ DeepSeek-V2-Lite,Q4_K_M,15.706,10.36,4.304,1.764,llama_cpp,38.908
4
+ aya-expanse-8b,Q8_0,9.077,9.644,3.1,0.027,llama_cpp,41.361
5
+ aya-23-8B,Q8_0,9.077,9.644,3.174,0.027,llama_cpp,38.263
6
+ Yi-1.5-9B,Q8_0,8.829,9.382,2.585,0.019,llama_cpp,41.77
7
+ Qwen2.5-14B,Q4_K_M,14.77,8.982,1.916,0.018,llama_cpp,42.48
8
+ DeepSeek-V2-Lite,Q4_0_4_4,15.706,8.901,7.788,3.867,llama_cpp,38.629
9
+ Phi-3-medium-128k-instruct,Q4_K_M,13.96,8.566,1.819,0.02,llama_cpp,42.674
10
+ Hermes-3-Llama-3.1-8B,Q8_0,8.03,8.533,3.286,0.922,llama_cpp,41.806
11
+ Qwen2.5-14B,Q4_0_4_4,14.77,8.512,4.698,0.028,llama_cpp,42.093
12
+ internlm2_5-7b-chat,Q8_0,7.738,8.222,3.258,1.238,llama_cpp,41.684
13
+ dolphin-2.9.2-qwen2-7b,Q8_0,7.616,8.093,4.241,1.301,llama_cpp,38.521
14
+ Qwen2.5-7B,Q8_0,7.616,8.093,4.253,1.302,llama_cpp,40.364
15
+ Phi-3-medium-128k-instruct,Q4_0_4_4,13.96,7.896,4.715,0.038,llama_cpp,42.136
16
+ NexusRaven-V2-13B,Q4_K_M,13.016,7.865,2.066,0.035,llama_cpp,32.934
17
+ Mistral-7B-Instruct-v0.3,Q8_0,7.248,7.702,4.104,1.29,llama_cpp,43.204
18
+ dolphin-2.9.3-mistral-7B-32k,Q8_0,7.248,7.702,4.135,1.294,llama_cpp,40.436
19
+ Yarn-Mistral-7b-128k,Q8_0,7.242,7.695,4.082,1.292,llama_cpp,40.171
20
+ Starling-LM-7B-beta,Q8_0,7.242,7.695,4.132,1.296,llama_cpp,41.318
21
+ Mistral-Nemo-Base-2407,Q4_K_M,12.248,7.469,2.453,1.358,llama_cpp,41.204
22
+ NexusRaven-V2-13B,Q4_0_4_4,13.016,7.365,4.979,1.348,llama_cpp,32.977
23
+ OLMoE-1B-7B-0924,Q8_0,6.919,7.358,26.942,7.489,llama_cpp,38.349
24
+ OLMo-7B-0724-hf,Q8_0,6.888,7.319,4.515,1.371,llama_cpp,36.219
25
+ mpt-7b-instruct,Q8_0,6.856,7.285,4.287,1.367,llama_cpp,35.33
26
+ Amber,Q8_0,6.738,7.16,4.442,1.373,llama_cpp,33.149
27
+ Mistral-Nemo-Base-2407,Q4_0_4_4,12.248,7.064,9.103,1.48,llama_cpp,41.885
28
+ gemma-2-9b,Q4_K_M,10.159,6.508,3.531,1.629,llama_cpp,41.813
29
+ Yarn-Solar-10b-64k,Q4_K_M,10.732,6.461,2.905,1.503,llama_cpp,38.815
30
+ SOLAR-10.7B-v1.0,Q4_K_M,10.732,6.461,2.925,1.505,llama_cpp,39.446
31
+ SOLAR-10.7B-Instruct-v1.0,Q4_K_M,10.732,6.461,2.916,1.506,llama_cpp,40.386
32
+ Yi-1.5-6B,Q8_0,6.061,6.441,5.269,1.584,llama_cpp,39.941
33
+ gemma-2-9b,Q4_0_4_4,10.159,6.19,10.553,1.757,llama_cpp,42.351
34
+ SOLAR-10.7B-v1.0,Q4_0_4_4,10.732,6.072,9.315,1.635,llama_cpp,39.504
35
+ SOLAR-10.7B-Instruct-v1.0,Q4_0_4_4,10.732,6.072,9.332,1.635,llama_cpp,40.673
36
+ Yarn-Solar-10b-64k,Q4_0_4_4,10.732,6.072,9.352,1.638,llama_cpp,39.41
37
+ aya-expanse-8b,Q4_K_M,9.077,5.906,4.406,1.911,llama_cpp,41.612
38
+ aya-23-8B,Q4_K_M,9.077,5.906,4.428,1.914,llama_cpp,37.804
39
+ aya-expanse-8b,Q4_0_4_4,9.077,5.647,14.074,2.05,llama_cpp,41.483
40
+ aya-23-8B,Q4_0_4_4,9.077,5.647,14.113,2.051,llama_cpp,38.277
41
+ Yi-1.5-9B,Q4_K_M,8.829,5.327,3.681,1.85,llama_cpp,41.218
42
+ Yi-1.5-9B,Q4_0_4_4,8.829,5.035,11.33,2.0,llama_cpp,40.479
43
+ Hermes-3-Llama-3.1-8B,Q4_K_M,8.03,4.913,4.375,2.078,llama_cpp,41.225
44
+ Llama-3.1-8B,Q4_K_M,8.03,4.913,4.403,2.086,llama_cpp,40.45
45
+ internlm2_5-7b-chat,Q4_K_M,7.738,4.711,4.4,2.133,llama_cpp,41.333
46
+ Qwen2.5-7B,Q4_K_M,7.616,4.677,4.769,2.201,llama_cpp,40.199
47
+ dolphin-2.9.2-qwen2-7b,Q4_K_M,7.616,4.677,4.759,2.204,llama_cpp,38.084
48
+ Llama-3.1-8B,Q4_0_4_4,8.03,4.653,13.99,2.245,llama_cpp,39.676
49
+ Hermes-3-Llama-3.1-8B,Q4_0_4_4,8.03,4.653,14.006,2.245,llama_cpp,40.68
50
+ internlm2_5-7b-chat,Q4_0_4_4,7.738,4.451,14.036,2.31,llama_cpp,41.691
51
+ mpt-7b-instruct,Q4_K_M,6.856,4.442,4.162,2.213,llama_cpp,35.265
52
+ Qwen2.5-7B,Q4_0_4_4,7.616,4.425,15.563,2.386,llama_cpp,40.063
53
+ dolphin-2.9.2-qwen2-7b,Q4_0_4_4,7.616,4.425,15.58,2.387,llama_cpp,37.704
54
+ dolphin-2.9.3-mistral-7B-32k,Q4_K_M,7.248,4.372,4.387,2.227,llama_cpp,39.748
55
+ Mistral-7B-Instruct-v0.3,Q4_K_M,7.248,4.372,4.462,2.241,llama_cpp,42.853
56
+ Starling-LM-7B-beta,Q4_K_M,7.242,4.368,4.406,2.234,llama_cpp,41.038
57
+ Yarn-Mistral-7b-128k,Q4_K_M,7.242,4.368,4.434,2.245,llama_cpp,40.085
58
+ OLMoE-1B-7B-0924,Q4_K_M,6.919,4.212,26.902,12.119,llama_cpp,38.284
59
+ OLMo-7B-0724-hf,Q4_K_M,6.888,4.183,4.706,2.339,llama_cpp,36.169
60
+ dolphin-2.9.3-mistral-7B-32k,Q4_0_4_4,7.248,4.113,14.053,2.427,llama_cpp,40.314
61
+ Mistral-7B-Instruct-v0.3,Q4_0_4_4,7.248,4.113,14.177,2.43,llama_cpp,42.882
62
+ Starling-LM-7B-beta,Q4_0_4_4,7.242,4.108,14.068,2.427,llama_cpp,41.297
63
+ Yarn-Mistral-7b-128k,Q4_0_4_4,7.242,4.108,14.139,2.436,llama_cpp,40.264
64
+ Amber,Q4_K_M,6.738,4.08,4.594,2.351,llama_cpp,32.662
65
+ Phi-3.5-mini-instruct,Q8_0,3.821,4.06,7.951,2.423,llama_cpp,41.77
66
+ Phi-3-mini-128k-instruct,Q8_0,3.821,4.06,7.947,2.426,llama_cpp,41.361
67
+ mpt-7b-instruct,Q4_0_4_4,6.856,3.964,14.569,2.533,llama_cpp,34.928
68
+ OLMoE-1B-7B-0924,Q4_0_4_4,6.919,3.926,50.413,12.989,llama_cpp,37.998
69
+ Llama-3.2-3B,Q8_0,3.607,3.833,10.31,2.83,llama_cpp,37.481
70
+ Amber,Q4_0_4_4,6.738,3.825,14.442,2.57,llama_cpp,33.085
71
+ Yi-1.5-6B,Q4_K_M,6.061,3.672,5.58,2.72,llama_cpp,39.253
72
+ Qwen2.5-3B,Q8_0,3.397,3.61,10.473,2.939,llama_cpp,38.557
73
+ Yi-1.5-6B,Q4_0_4_4,6.061,3.478,17.017,2.945,llama_cpp,39.195
74
+ dolphin-2.9.4-gemma2-2b,Q8_0,3.204,3.405,13.966,3.381,llama_cpp,37.202
75
+ gemma-2-2b,Q8_0,3.204,3.405,13.996,3.385,llama_cpp,37.323
76
+ stable-code-instruct-3b,Q8_0,2.795,2.971,10.668,3.316,llama_cpp,29.886
77
+ Phi-3.5-mini-instruct,Q4_K_M,3.821,2.393,7.502,3.936,llama_cpp,41.082
78
+ Phi-3-mini-128k-instruct,Q4_K_M,3.821,2.393,7.519,3.938,llama_cpp,40.895
79
+ Llama-3.2-3B,Q4_K_M,3.607,2.335,10.691,4.674,llama_cpp,37.338
80
+ Llama-3.2-3B,Q4_0_4_4,3.607,2.233,31.72,5.025,llama_cpp,36.814
81
+ gemma-2-2b,Q4_K_M,3.204,2.186,14.202,5.253,llama_cpp,36.958
82
+ dolphin-2.9.4-gemma2-2b,Q4_K_M,3.204,2.186,14.218,5.253,llama_cpp,37.302
83
+ Qwen2.5-3B,Q4_K_M,3.397,2.179,10.638,4.808,llama_cpp,38.162
84
+ Phi-3.5-mini-instruct,Q4_0_4_4,3.821,2.175,23.369,4.428,llama_cpp,41.383
85
+ Phi-3-mini-128k-instruct,Q4_0_4_4,3.821,2.175,23.461,4.436,llama_cpp,40.608
86
+ gemma-2-2b,Q4_0_4_4,3.204,2.107,40.616,5.552,llama_cpp,37.374
87
+ dolphin-2.9.4-gemma2-2b,Q4_0_4_4,3.204,2.107,40.977,5.58,llama_cpp,37.051
88
+ Qwen2.5-3B,Q4_0_4_4,3.397,2.072,32.434,5.239,llama_cpp,37.912
89
+ internlm2_5-1_8b-chat,Q8_0,1.889,2.007,19.329,5.279,llama_cpp,33.996
90
+ SmolLM2-1.7B-Instruct,Q8_0,1.812,1.926,17.524,5.177,llama_cpp,35.989
91
+ Qwen2.5-1.5B,Q8_0,1.777,1.889,21.927,5.793,llama_cpp,35.81
92
+ stable-code-instruct-3b,Q4_K_M,2.795,1.707,10.803,5.564,llama_cpp,29.8
93
+ stable-code-instruct-3b,Q4_0_4_4,2.795,1.607,28.926,5.957,llama_cpp,29.843
94
+ Llama-3.2-1B,Q8_0,1.498,1.592,29.722,7.295,llama_cpp,33.974
95
+ Yi-Coder-1.5B,Q8_0,1.476,1.569,23.894,6.596,llama_cpp,29.334
96
+ OLMo-1B-0724-hf,Q8_0,1.28,1.36,27.787,7.591,llama_cpp,31.693
97
+ Qwen2.5-1.5B,Q4_K_M,1.777,1.172,22.326,9.56,llama_cpp,35.832
98
+ internlm2_5-1_8b-chat,Q4_K_M,1.889,1.17,19.453,8.56,llama_cpp,33.709
99
+ TinyLlama-1.1B-Chat-v1.0,Q8_0,1.1,1.169,28.472,8.637,llama_cpp,30.897
100
+ TinyLlama_v1.1,Q8_0,1.1,1.169,28.538,8.652,llama_cpp,28.186
101
+ SmolLM2-1.7B-Instruct,Q4_K_M,1.812,1.136,17.72,8.497,llama_cpp,35.358
102
+ Qwen2.5-1.5B,Q4_0_4_4,1.777,1.12,65.915,10.128,llama_cpp,35.064
103
+ internlm2_5-1_8b-chat,Q4_0_4_4,1.889,1.112,57.736,9.243,llama_cpp,32.21
104
+ SmolLM2-1.7B-Instruct,Q4_0_4_4,1.812,1.072,50.27,9.239,llama_cpp,35.136
105
+ Llama-3.2-1B,Q4_K_M,1.498,1.015,30.451,11.51,llama_cpp,33.472
106
+ Llama-3.2-1B,Q4_0_4_4,1.498,0.979,86.772,12.364,llama_cpp,33.386
107
+ Yi-Coder-1.5B,Q4_K_M,1.476,0.962,23.267,10.03,llama_cpp,29.391
108
+ Yi-Coder-1.5B,Q4_0_4_4,1.476,0.865,67.713,11.422,llama_cpp,29.24
109
+ OLMo-1B-0724-hf,Q4_K_M,1.28,0.79,28.276,12.321,llama_cpp,31.865
110
+ OLMo-1B-0724-hf,Q4_0_4_4,1.28,0.746,84.882,13.339,llama_cpp,31.457
111
+ Qwen2.5-0.5B,Q8_0,0.63,0.67,75.456,18.06,llama_cpp,31.937
112
+ TinyLlama-1.1B-Chat-v1.0,Q4_K_M,1.1,0.667,29.44,14.305,llama_cpp,30.653
113
+ TinyLlama_v1.1,Q4_K_M,1.1,0.667,29.397,14.346,llama_cpp,28.043
114
+ TinyLlama-1.1B-Chat-v1.0,Q4_0_4_4,1.1,0.636,77.823,15.509,llama_cpp,30.861
115
+ TinyLlama_v1.1,Q4_0_4_4,1.1,0.636,77.943,15.543,llama_cpp,28.315
116
+ Qwen2.5-0.5B,Q4_K_M,0.63,0.537,52.916,22.324,llama_cpp,31.442
117
+ Qwen2.5-0.5B,Q4_0_4_4,0.63,0.491,189.874,26.738,llama_cpp,31.256
118
+ gpt2-medium,Q8_0,0.406,0.436,83.423,23.016,llama_cpp,29.032
119
+ SmolLM2-360M-Instruct,Q8_0,0.409,0.435,79.518,22.857,llama_cpp,32.303
120
+ SmolLM2-360M-Instruct,Q4_K_M,0.409,0.319,55.774,30.718,llama_cpp,31.944
121
+ SmolLM2-360M-Instruct,Q4_0_4_4,0.409,0.277,173.275,37.176,llama_cpp,32.038
122
+ gpt2-medium,Q4_K_M,0.406,0.269,73.615,33.913,llama_cpp,28.81
123
+ gpt2-medium,Q4_0_4_4,0.406,0.247,178.73,37.89,llama_cpp,28.824
124
+ gpt2,Q8_0,0.163,0.176,302.932,68.191,llama_cpp,27.24
125
+ SmolLM2-135M-Instruct,Q8_0,0.163,0.173,212.146,57.992,llama_cpp,29.893
126
+ SmolLM2-135M-Instruct,Q4_K_M,0.163,0.134,153.439,73.272,llama_cpp,29.492
127
+ SmolLM2-135M-Instruct,Q4_0_4_4,0.163,0.12,381.667,86.735,llama_cpp,29.821
128
+ gpt2,Q4_K_M,0.163,0.111,269.906,92.707,llama_cpp,27.598
129
+ gpt2,Q4_0_4_4,0.163,0.105,582.32,101.509,llama_cpp,27.899
src/leaderboard.py CHANGED
@@ -16,6 +16,7 @@ LEADERBOARD_COLUMN_TO_DATATYPE = {
16
  # "Reserved Memory (MB)": "number",
17
  # "Used Memory (MB)": "number",
18
  "Params (B)": "number",
 
19
  }
20
 
21
  PRIMARY_COLUMNS = [
@@ -24,6 +25,7 @@ PRIMARY_COLUMNS = [
24
  "Prefill (tokens/s)",
25
  "Decode (tokens/s)",
26
  "Model Size (GB)",
 
27
  ]
28
 
29
 
 
16
  # "Reserved Memory (MB)": "number",
17
  # "Used Memory (MB)": "number",
18
  "Params (B)": "number",
19
+ "MMLU Accuracy": "number",
20
  }
21
 
22
  PRIMARY_COLUMNS = [
 
25
  "Prefill (tokens/s)",
26
  "Decode (tokens/s)",
27
  "Model Size (GB)",
28
+ "MMLU Accuracy"
29
  ]
30
 
31
 
src/llm_perf.py CHANGED
@@ -5,21 +5,21 @@ import pandas as pd
5
 
6
  DATASET_DIRECTORY = "dataset"
7
 
8
- COLUMNS_MAPPING = {
9
- "config.name": "Quantization",
10
- "config.backend.model": "Model",
11
- # primary measurements
12
- "report.prefill.throughput.value": "Prefill (tokens/s)",
13
- "report.decode.throughput.value": "Decode (tokens/s)",
14
- "report.memory": "Model Size (GB)",
15
- # deployment settings
16
- "config.backend.name": "Backend",
17
- "quantization": "Quantization",
18
- # additional information
19
- "#Params (B)": "Params (B)",
20
- }
21
- SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)"]
22
- SORTING_ASCENDING = [False, True, True]
23
 
24
 
25
  def get_raw_llm_perf_df(
@@ -28,7 +28,7 @@ def get_raw_llm_perf_df(
28
  dfs = []
29
  try:
30
  dfs.append(
31
- pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results.csv")
32
  # pd.read_csv(
33
  # f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv"
34
  # )
@@ -68,6 +68,7 @@ def processed_llm_perf_df(llm_perf_df):
68
  "Decode (tokens/s)": 3,
69
  "Model Size (GB)": 3,
70
  "#Params (B)": 3,
 
71
  }
72
  )
73
  # sort by metric
 
5
 
6
  DATASET_DIRECTORY = "dataset"
7
 
8
+ # COLUMNS_MAPPING = {
9
+ # "config.name": "Quantization",
10
+ # "config.backend.model": "Model",
11
+ # # primary measurements
12
+ # "report.prefill.throughput.value": "Prefill (tokens/s)",
13
+ # "report.decode.throughput.value": "Decode (tokens/s)",
14
+ # "report.memory": "Model Size (GB)",
15
+ # # deployment settings
16
+ # "config.backend.name": "Backend",
17
+ # "quantization": "Quantization",
18
+ # # additional information
19
+ # "#Params (B)": "Params (B)",
20
+ # }
21
+ SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)", "MMLU Accuracy"]
22
+ SORTING_ASCENDING = [False, True, True, True]
23
 
24
 
25
  def get_raw_llm_perf_df(
 
28
  dfs = []
29
  try:
30
  dfs.append(
31
+ pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results_with_mmlu.csv")
32
  # pd.read_csv(
33
  # f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv"
34
  # )
 
68
  "Decode (tokens/s)": 3,
69
  "Model Size (GB)": 3,
70
  "#Params (B)": 3,
71
+ "MMLU Accuracy": 3,
72
  }
73
  )
74
  # sort by metric