Spaces:
Running
Running
Arnav Chavan
commited on
Commit
·
c113723
1
Parent(s):
abb9e2b
add mmlu acc
Browse files- dataset/llm-perf-leaderboard-Raspberry Pi 5(8GB).csv +129 -129
- src/leaderboard.py +2 -0
- src/llm_perf.py +17 -16
dataset/llm-perf-leaderboard-Raspberry Pi 5(8GB).csv
CHANGED
@@ -1,129 +1,129 @@
|
|
1 |
-
Model,Quantization,Params (B),Model Size (GB),Prefill (tokens/s),Decode (tokens/s),Backend
|
2 |
-
gemma-2-9b,Q8_0,10.159,10.796,2.169,0.012,llama_cpp
|
3 |
-
DeepSeek-V2-Lite,Q4_K_M,15.706,10.36,4.304,1.764,llama_cpp
|
4 |
-
aya-expanse-8b,Q8_0,9.077,9.644,3.1,0.027,llama_cpp
|
5 |
-
aya-23-
|
6 |
-
Yi-1.5-9B,Q8_0,8.829,9.382,2.585,0.019,llama_cpp
|
7 |
-
Qwen2.5-14B,Q4_K_M,14.77,8.982,1.916,0.018,llama_cpp
|
8 |
-
DeepSeek-V2-Lite,Q4_0_4_4,15.706,8.901,7.788,3.867,llama_cpp
|
9 |
-
Phi-3-medium-128k-instruct,Q4_K_M,13.96,8.566,1.819,0.02,llama_cpp
|
10 |
-
Hermes-3-Llama-3.1-8B,Q8_0,8.03,8.533,3.286,0.922,llama_cpp
|
11 |
-
Qwen2.5-14B,Q4_0_4_4,14.77,8.512,4.698,0.028,llama_cpp
|
12 |
-
internlm2_5-7b-chat,Q8_0,7.738,8.222,3.258,1.238,llama_cpp
|
13 |
-
dolphin-2.9.2-qwen2-7b,Q8_0,7.616,8.093,4.241,1.301,llama_cpp
|
14 |
-
Qwen2.5-7B,Q8_0,7.616,8.093,4.253,1.302,llama_cpp
|
15 |
-
Phi-3-medium-128k-instruct,Q4_0_4_4,13.96,7.896,4.715,0.038,llama_cpp
|
16 |
-
NexusRaven-V2-13B,Q4_K_M,13.016,7.865,2.066,0.035,llama_cpp
|
17 |
-
Mistral-7B-Instruct-v0.3,Q8_0,7.248,7.702,4.104,1.29,llama_cpp
|
18 |
-
dolphin-2.9.3-mistral-7B-32k,Q8_0,7.248,7.702,4.135,1.294,llama_cpp
|
19 |
-
Yarn-Mistral-7b-128k,Q8_0,7.242,7.695,4.082,1.292,llama_cpp
|
20 |
-
Starling-LM-7B-beta,Q8_0,7.242,7.695,4.132,1.296,llama_cpp
|
21 |
-
Mistral-Nemo-Base-2407,Q4_K_M,12.248,7.469,2.453,1.358,llama_cpp
|
22 |
-
NexusRaven-V2-13B,Q4_0_4_4,13.016,7.365,4.979,1.348,llama_cpp
|
23 |
-
OLMoE-1B-7B-0924,Q8_0,6.919,7.358,26.942,7.489,llama_cpp
|
24 |
-
OLMo-7B-0724-hf,Q8_0,6.888,7.319,4.515,1.371,llama_cpp
|
25 |
-
mpt-7b-instruct,Q8_0,6.856,7.285,4.287,1.367,llama_cpp
|
26 |
-
Amber,Q8_0,6.738,7.16,4.442,1.373,llama_cpp
|
27 |
-
Mistral-Nemo-Base-2407,Q4_0_4_4,12.248,7.064,9.103,1.48,llama_cpp
|
28 |
-
gemma-2-9b,Q4_K_M,10.159,6.508,3.531,1.629,llama_cpp
|
29 |
-
Yarn-Solar-10b-64k,Q4_K_M,10.732,6.461,2.905,1.503,llama_cpp
|
30 |
-
SOLAR-10.7B-v1.0,Q4_K_M,10.732,6.461,2.925,1.505,llama_cpp
|
31 |
-
SOLAR-10.7B-Instruct-v1.0,Q4_K_M,10.732,6.461,2.916,1.506,llama_cpp
|
32 |
-
Yi-1.5-6B,Q8_0,6.061,6.441,5.269,1.584,llama_cpp
|
33 |
-
gemma-2-9b,Q4_0_4_4,10.159,6.19,10.553,1.757,llama_cpp
|
34 |
-
SOLAR-10.7B-v1.0,Q4_0_4_4,10.732,6.072,9.315,1.635,llama_cpp
|
35 |
-
SOLAR-10.7B-Instruct-v1.0,Q4_0_4_4,10.732,6.072,9.332,1.635,llama_cpp
|
36 |
-
Yarn-Solar-10b-64k,Q4_0_4_4,10.732,6.072,9.352,1.638,llama_cpp
|
37 |
-
aya-expanse-8b,Q4_K_M,9.077,5.906,4.406,1.911,llama_cpp
|
38 |
-
aya-23-8B,Q4_K_M,9.077,5.906,4.428,1.914,llama_cpp
|
39 |
-
aya-expanse-8b,Q4_0_4_4,9.077,5.647,14.074,2.05,llama_cpp
|
40 |
-
aya-23-8B,Q4_0_4_4,9.077,5.647,14.113,2.051,llama_cpp
|
41 |
-
Yi-1.5-9B,Q4_K_M,8.829,5.327,3.681,1.85,llama_cpp
|
42 |
-
Yi-1.5-9B,Q4_0_4_4,8.829,5.035,11.33,2.0,llama_cpp
|
43 |
-
Hermes-3-Llama-3.1-8B,Q4_K_M,8.03,4.913,4.375,2.078,llama_cpp
|
44 |
-
Llama-3.1-8B,Q4_K_M,8.03,4.913,4.403,2.086,llama_cpp
|
45 |
-
internlm2_5-7b-chat,Q4_K_M,7.738,4.711,4.4,2.133,llama_cpp
|
46 |
-
Qwen2.5-7B,Q4_K_M,7.616,4.677,4.769,2.201,llama_cpp
|
47 |
-
dolphin-2.9.2-qwen2-7b,Q4_K_M,7.616,4.677,4.759,2.204,llama_cpp
|
48 |
-
Llama-3.1-8B,Q4_0_4_4,8.03,4.653,13.99,2.245,llama_cpp
|
49 |
-
Hermes-3-Llama-3.1-8B,Q4_0_4_4,8.03,4.653,14.006,2.245,llama_cpp
|
50 |
-
internlm2_5-7b-chat,Q4_0_4_4,7.738,4.451,14.036,2.31,llama_cpp
|
51 |
-
mpt-7b-instruct,Q4_K_M,6.856,4.442,4.162,2.213,llama_cpp
|
52 |
-
Qwen2.5-7B,Q4_0_4_4,7.616,4.425,15.563,2.386,llama_cpp
|
53 |
-
dolphin-2.9.2-qwen2-7b,Q4_0_4_4,7.616,4.425,15.58,2.387,llama_cpp
|
54 |
-
dolphin-2.9.3-mistral-7B-32k,Q4_K_M,7.248,4.372,4.387,2.227,llama_cpp
|
55 |
-
Mistral-7B-Instruct-v0.3,Q4_K_M,7.248,4.372,4.462,2.241,llama_cpp
|
56 |
-
Starling-LM-7B-beta,Q4_K_M,7.242,4.368,4.406,2.234,llama_cpp
|
57 |
-
Yarn-Mistral-7b-128k,Q4_K_M,7.242,4.368,4.434,2.245,llama_cpp
|
58 |
-
OLMoE-1B-7B-0924,Q4_K_M,6.919,4.212,26.902,12.119,llama_cpp
|
59 |
-
OLMo-7B-0724-hf,Q4_K_M,6.888,4.183,4.706,2.339,llama_cpp
|
60 |
-
dolphin-2.9.3-mistral-7B-32k,Q4_0_4_4,7.248,4.113,14.053,2.427,llama_cpp
|
61 |
-
Mistral-7B-Instruct-v0.3,Q4_0_4_4,7.248,4.113,14.177,2.43,llama_cpp
|
62 |
-
Starling-LM-7B-beta,Q4_0_4_4,7.242,4.108,14.068,2.427,llama_cpp
|
63 |
-
Yarn-Mistral-7b-128k,Q4_0_4_4,7.242,4.108,14.139,2.436,llama_cpp
|
64 |
-
Amber,Q4_K_M,6.738,4.08,4.594,2.351,llama_cpp
|
65 |
-
Phi-3.5-mini-instruct,Q8_0,3.821,4.06,7.951,2.423,llama_cpp
|
66 |
-
Phi-3-mini-128k-instruct,Q8_0,3.821,4.06,7.947,2.426,llama_cpp
|
67 |
-
mpt-7b-instruct,Q4_0_4_4,6.856,3.964,14.569,2.533,llama_cpp
|
68 |
-
OLMoE-1B-7B-0924,Q4_0_4_4,6.919,3.926,50.413,12.989,llama_cpp
|
69 |
-
Llama-3.2-3B,Q8_0,3.607,3.833,10.31,2.83,llama_cpp
|
70 |
-
Amber,Q4_0_4_4,6.738,3.825,14.442,2.57,llama_cpp
|
71 |
-
Yi-1.5-6B,Q4_K_M,6.061,3.672,5.58,2.72,llama_cpp
|
72 |
-
Qwen2.5-3B,Q8_0,3.397,3.61,10.473,2.939,llama_cpp
|
73 |
-
Yi-1.5-6B,Q4_0_4_4,6.061,3.478,17.017,2.945,llama_cpp
|
74 |
-
dolphin-2.9.4-gemma2-2b,Q8_0,3.204,3.405,13.966,3.381,llama_cpp
|
75 |
-
gemma-2-2b,Q8_0,3.204,3.405,13.996,3.385,llama_cpp
|
76 |
-
stable-code-instruct-3b,Q8_0,2.795,2.971,10.668,3.316,llama_cpp
|
77 |
-
Phi-3.5-mini-instruct,Q4_K_M,3.821,2.393,7.502,3.936,llama_cpp
|
78 |
-
Phi-3-mini-128k-instruct,Q4_K_M,3.821,2.393,7.519,3.938,llama_cpp
|
79 |
-
Llama-3.2-3B,Q4_K_M,3.607,2.335,10.691,4.674,llama_cpp
|
80 |
-
Llama-3.2-3B,Q4_0_4_4,3.607,2.233,31.72,5.025,llama_cpp
|
81 |
-
gemma-2-2b,Q4_K_M,3.204,2.186,14.202,5.253,llama_cpp
|
82 |
-
dolphin-2.9.4-gemma2-2b,Q4_K_M,3.204,2.186,14.218,5.253,llama_cpp
|
83 |
-
Qwen2.5-3B,Q4_K_M,3.397,2.179,10.638,4.808,llama_cpp
|
84 |
-
Phi-3.5-mini-instruct,Q4_0_4_4,3.821,2.175,23.369,4.428,llama_cpp
|
85 |
-
Phi-3-mini-128k-instruct,Q4_0_4_4,3.821,2.175,23.461,4.436,llama_cpp
|
86 |
-
gemma-2-2b,Q4_0_4_4,3.204,2.107,40.616,5.552,llama_cpp
|
87 |
-
dolphin-2.9.4-gemma2-2b,Q4_0_4_4,3.204,2.107,40.977,5.58,llama_cpp
|
88 |
-
Qwen2.5-3B,Q4_0_4_4,3.397,2.072,32.434,5.239,llama_cpp
|
89 |
-
internlm2_5-1_8b-chat,Q8_0,1.889,2.007,19.329,5.279,llama_cpp
|
90 |
-
SmolLM2-1.7B-Instruct,Q8_0,1.812,1.926,17.524,5.177,llama_cpp
|
91 |
-
Qwen2.5-1.5B,Q8_0,1.777,1.889,21.927,5.793,llama_cpp
|
92 |
-
stable-code-instruct-3b,Q4_K_M,2.795,1.707,10.803,5.564,llama_cpp
|
93 |
-
stable-code-instruct-3b,Q4_0_4_4,2.795,1.607,28.926,5.957,llama_cpp
|
94 |
-
Llama-3.2-1B,Q8_0,1.498,1.592,29.722,7.295,llama_cpp
|
95 |
-
Yi-Coder-1.5B,Q8_0,1.476,1.569,23.894,6.596,llama_cpp
|
96 |
-
OLMo-1B-0724-hf,Q8_0,1.28,1.36,27.787,7.591,llama_cpp
|
97 |
-
Qwen2.5-1.5B,Q4_K_M,1.777,1.172,22.326,9.56,llama_cpp
|
98 |
-
internlm2_5-1_8b-chat,Q4_K_M,1.889,1.17,19.453,8.56,llama_cpp
|
99 |
-
TinyLlama-1.1B-Chat-v1.0,Q8_0,1.1,1.169,28.472,8.637,llama_cpp
|
100 |
-
TinyLlama_v1.1,Q8_0,1.1,1.169,28.538,8.652,llama_cpp
|
101 |
-
SmolLM2-1.7B-Instruct,Q4_K_M,1.812,1.136,17.72,8.497,llama_cpp
|
102 |
-
Qwen2.5-1.5B,Q4_0_4_4,1.777,1.12,65.915,10.128,llama_cpp
|
103 |
-
internlm2_5-1_8b-chat,Q4_0_4_4,1.889,1.112,57.736,9.243,llama_cpp
|
104 |
-
SmolLM2-1.7B-Instruct,Q4_0_4_4,1.812,1.072,50.27,9.239,llama_cpp
|
105 |
-
Llama-3.2-1B,Q4_K_M,1.498,1.015,30.451,11.51,llama_cpp
|
106 |
-
Llama-3.2-1B,Q4_0_4_4,1.498,0.979,86.772,12.364,llama_cpp
|
107 |
-
Yi-Coder-1.5B,Q4_K_M,1.476,0.962,23.267,10.03,llama_cpp
|
108 |
-
Yi-Coder-1.5B,Q4_0_4_4,1.476,0.865,67.713,11.422,llama_cpp
|
109 |
-
OLMo-1B-0724-hf,Q4_K_M,1.28,0.79,28.276,12.321,llama_cpp
|
110 |
-
OLMo-1B-0724-hf,Q4_0_4_4,1.28,0.746,84.882,13.339,llama_cpp
|
111 |
-
Qwen2.5-0.5B,Q8_0,0.63,0.67,75.456,18.06,llama_cpp
|
112 |
-
TinyLlama-1.1B-Chat-v1.0,Q4_K_M,1.1,0.667,29.44,14.305,llama_cpp
|
113 |
-
TinyLlama_v1.1,Q4_K_M,1.1,0.667,29.397,14.346,llama_cpp
|
114 |
-
TinyLlama-1.1B-Chat-v1.0,Q4_0_4_4,1.1,0.636,77.823,15.509,llama_cpp
|
115 |
-
TinyLlama_v1.1,Q4_0_4_4,1.1,0.636,77.943,15.543,llama_cpp
|
116 |
-
Qwen2.5-0.5B,Q4_K_M,0.63,0.537,52.916,22.324,llama_cpp
|
117 |
-
Qwen2.5-0.5B,Q4_0_4_4,0.63,0.491,189.874,26.738,llama_cpp
|
118 |
-
gpt2-medium,Q8_0,0.406,0.436,83.423,23.016,llama_cpp
|
119 |
-
SmolLM2-360M-Instruct,Q8_0,0.409,0.435,79.518,22.857,llama_cpp
|
120 |
-
SmolLM2-360M-Instruct,Q4_K_M,0.409,0.319,55.774,30.718,llama_cpp
|
121 |
-
SmolLM2-360M-Instruct,Q4_0_4_4,0.409,0.277,173.275,37.176,llama_cpp
|
122 |
-
gpt2-medium,Q4_K_M,0.406,0.269,73.615,33.913,llama_cpp
|
123 |
-
gpt2-medium,Q4_0_4_4,0.406,0.247,178.73,37.89,llama_cpp
|
124 |
-
gpt2,Q8_0,0.163,0.176,302.932,68.191,llama_cpp
|
125 |
-
SmolLM2-135M-Instruct,Q8_0,0.163,0.173,212.146,57.992,llama_cpp
|
126 |
-
SmolLM2-135M-Instruct,Q4_K_M,0.163,0.134,153.439,73.272,llama_cpp
|
127 |
-
SmolLM2-135M-Instruct,Q4_0_4_4,0.163,0.12,381.667,86.735,llama_cpp
|
128 |
-
gpt2,Q4_K_M,0.163,0.111,269.906,92.707,llama_cpp
|
129 |
-
gpt2,Q4_0_4_4,0.163,0.105,582.32,101.509,llama_cpp
|
|
|
1 |
+
Model,Quantization,Params (B),Model Size (GB),Prefill (tokens/s),Decode (tokens/s),Backend,MMLU Accuracy
|
2 |
+
gemma-2-9b,Q8_0,10.159,10.796,2.169,0.012,llama_cpp,42.365
|
3 |
+
DeepSeek-V2-Lite,Q4_K_M,15.706,10.36,4.304,1.764,llama_cpp,38.908
|
4 |
+
aya-expanse-8b,Q8_0,9.077,9.644,3.1,0.027,llama_cpp,41.361
|
5 |
+
aya-23-8B,Q8_0,9.077,9.644,3.174,0.027,llama_cpp,38.263
|
6 |
+
Yi-1.5-9B,Q8_0,8.829,9.382,2.585,0.019,llama_cpp,41.77
|
7 |
+
Qwen2.5-14B,Q4_K_M,14.77,8.982,1.916,0.018,llama_cpp,42.48
|
8 |
+
DeepSeek-V2-Lite,Q4_0_4_4,15.706,8.901,7.788,3.867,llama_cpp,38.629
|
9 |
+
Phi-3-medium-128k-instruct,Q4_K_M,13.96,8.566,1.819,0.02,llama_cpp,42.674
|
10 |
+
Hermes-3-Llama-3.1-8B,Q8_0,8.03,8.533,3.286,0.922,llama_cpp,41.806
|
11 |
+
Qwen2.5-14B,Q4_0_4_4,14.77,8.512,4.698,0.028,llama_cpp,42.093
|
12 |
+
internlm2_5-7b-chat,Q8_0,7.738,8.222,3.258,1.238,llama_cpp,41.684
|
13 |
+
dolphin-2.9.2-qwen2-7b,Q8_0,7.616,8.093,4.241,1.301,llama_cpp,38.521
|
14 |
+
Qwen2.5-7B,Q8_0,7.616,8.093,4.253,1.302,llama_cpp,40.364
|
15 |
+
Phi-3-medium-128k-instruct,Q4_0_4_4,13.96,7.896,4.715,0.038,llama_cpp,42.136
|
16 |
+
NexusRaven-V2-13B,Q4_K_M,13.016,7.865,2.066,0.035,llama_cpp,32.934
|
17 |
+
Mistral-7B-Instruct-v0.3,Q8_0,7.248,7.702,4.104,1.29,llama_cpp,43.204
|
18 |
+
dolphin-2.9.3-mistral-7B-32k,Q8_0,7.248,7.702,4.135,1.294,llama_cpp,40.436
|
19 |
+
Yarn-Mistral-7b-128k,Q8_0,7.242,7.695,4.082,1.292,llama_cpp,40.171
|
20 |
+
Starling-LM-7B-beta,Q8_0,7.242,7.695,4.132,1.296,llama_cpp,41.318
|
21 |
+
Mistral-Nemo-Base-2407,Q4_K_M,12.248,7.469,2.453,1.358,llama_cpp,41.204
|
22 |
+
NexusRaven-V2-13B,Q4_0_4_4,13.016,7.365,4.979,1.348,llama_cpp,32.977
|
23 |
+
OLMoE-1B-7B-0924,Q8_0,6.919,7.358,26.942,7.489,llama_cpp,38.349
|
24 |
+
OLMo-7B-0724-hf,Q8_0,6.888,7.319,4.515,1.371,llama_cpp,36.219
|
25 |
+
mpt-7b-instruct,Q8_0,6.856,7.285,4.287,1.367,llama_cpp,35.33
|
26 |
+
Amber,Q8_0,6.738,7.16,4.442,1.373,llama_cpp,33.149
|
27 |
+
Mistral-Nemo-Base-2407,Q4_0_4_4,12.248,7.064,9.103,1.48,llama_cpp,41.885
|
28 |
+
gemma-2-9b,Q4_K_M,10.159,6.508,3.531,1.629,llama_cpp,41.813
|
29 |
+
Yarn-Solar-10b-64k,Q4_K_M,10.732,6.461,2.905,1.503,llama_cpp,38.815
|
30 |
+
SOLAR-10.7B-v1.0,Q4_K_M,10.732,6.461,2.925,1.505,llama_cpp,39.446
|
31 |
+
SOLAR-10.7B-Instruct-v1.0,Q4_K_M,10.732,6.461,2.916,1.506,llama_cpp,40.386
|
32 |
+
Yi-1.5-6B,Q8_0,6.061,6.441,5.269,1.584,llama_cpp,39.941
|
33 |
+
gemma-2-9b,Q4_0_4_4,10.159,6.19,10.553,1.757,llama_cpp,42.351
|
34 |
+
SOLAR-10.7B-v1.0,Q4_0_4_4,10.732,6.072,9.315,1.635,llama_cpp,39.504
|
35 |
+
SOLAR-10.7B-Instruct-v1.0,Q4_0_4_4,10.732,6.072,9.332,1.635,llama_cpp,40.673
|
36 |
+
Yarn-Solar-10b-64k,Q4_0_4_4,10.732,6.072,9.352,1.638,llama_cpp,39.41
|
37 |
+
aya-expanse-8b,Q4_K_M,9.077,5.906,4.406,1.911,llama_cpp,41.612
|
38 |
+
aya-23-8B,Q4_K_M,9.077,5.906,4.428,1.914,llama_cpp,37.804
|
39 |
+
aya-expanse-8b,Q4_0_4_4,9.077,5.647,14.074,2.05,llama_cpp,41.483
|
40 |
+
aya-23-8B,Q4_0_4_4,9.077,5.647,14.113,2.051,llama_cpp,38.277
|
41 |
+
Yi-1.5-9B,Q4_K_M,8.829,5.327,3.681,1.85,llama_cpp,41.218
|
42 |
+
Yi-1.5-9B,Q4_0_4_4,8.829,5.035,11.33,2.0,llama_cpp,40.479
|
43 |
+
Hermes-3-Llama-3.1-8B,Q4_K_M,8.03,4.913,4.375,2.078,llama_cpp,41.225
|
44 |
+
Llama-3.1-8B,Q4_K_M,8.03,4.913,4.403,2.086,llama_cpp,40.45
|
45 |
+
internlm2_5-7b-chat,Q4_K_M,7.738,4.711,4.4,2.133,llama_cpp,41.333
|
46 |
+
Qwen2.5-7B,Q4_K_M,7.616,4.677,4.769,2.201,llama_cpp,40.199
|
47 |
+
dolphin-2.9.2-qwen2-7b,Q4_K_M,7.616,4.677,4.759,2.204,llama_cpp,38.084
|
48 |
+
Llama-3.1-8B,Q4_0_4_4,8.03,4.653,13.99,2.245,llama_cpp,39.676
|
49 |
+
Hermes-3-Llama-3.1-8B,Q4_0_4_4,8.03,4.653,14.006,2.245,llama_cpp,40.68
|
50 |
+
internlm2_5-7b-chat,Q4_0_4_4,7.738,4.451,14.036,2.31,llama_cpp,41.691
|
51 |
+
mpt-7b-instruct,Q4_K_M,6.856,4.442,4.162,2.213,llama_cpp,35.265
|
52 |
+
Qwen2.5-7B,Q4_0_4_4,7.616,4.425,15.563,2.386,llama_cpp,40.063
|
53 |
+
dolphin-2.9.2-qwen2-7b,Q4_0_4_4,7.616,4.425,15.58,2.387,llama_cpp,37.704
|
54 |
+
dolphin-2.9.3-mistral-7B-32k,Q4_K_M,7.248,4.372,4.387,2.227,llama_cpp,39.748
|
55 |
+
Mistral-7B-Instruct-v0.3,Q4_K_M,7.248,4.372,4.462,2.241,llama_cpp,42.853
|
56 |
+
Starling-LM-7B-beta,Q4_K_M,7.242,4.368,4.406,2.234,llama_cpp,41.038
|
57 |
+
Yarn-Mistral-7b-128k,Q4_K_M,7.242,4.368,4.434,2.245,llama_cpp,40.085
|
58 |
+
OLMoE-1B-7B-0924,Q4_K_M,6.919,4.212,26.902,12.119,llama_cpp,38.284
|
59 |
+
OLMo-7B-0724-hf,Q4_K_M,6.888,4.183,4.706,2.339,llama_cpp,36.169
|
60 |
+
dolphin-2.9.3-mistral-7B-32k,Q4_0_4_4,7.248,4.113,14.053,2.427,llama_cpp,40.314
|
61 |
+
Mistral-7B-Instruct-v0.3,Q4_0_4_4,7.248,4.113,14.177,2.43,llama_cpp,42.882
|
62 |
+
Starling-LM-7B-beta,Q4_0_4_4,7.242,4.108,14.068,2.427,llama_cpp,41.297
|
63 |
+
Yarn-Mistral-7b-128k,Q4_0_4_4,7.242,4.108,14.139,2.436,llama_cpp,40.264
|
64 |
+
Amber,Q4_K_M,6.738,4.08,4.594,2.351,llama_cpp,32.662
|
65 |
+
Phi-3.5-mini-instruct,Q8_0,3.821,4.06,7.951,2.423,llama_cpp,41.77
|
66 |
+
Phi-3-mini-128k-instruct,Q8_0,3.821,4.06,7.947,2.426,llama_cpp,41.361
|
67 |
+
mpt-7b-instruct,Q4_0_4_4,6.856,3.964,14.569,2.533,llama_cpp,34.928
|
68 |
+
OLMoE-1B-7B-0924,Q4_0_4_4,6.919,3.926,50.413,12.989,llama_cpp,37.998
|
69 |
+
Llama-3.2-3B,Q8_0,3.607,3.833,10.31,2.83,llama_cpp,37.481
|
70 |
+
Amber,Q4_0_4_4,6.738,3.825,14.442,2.57,llama_cpp,33.085
|
71 |
+
Yi-1.5-6B,Q4_K_M,6.061,3.672,5.58,2.72,llama_cpp,39.253
|
72 |
+
Qwen2.5-3B,Q8_0,3.397,3.61,10.473,2.939,llama_cpp,38.557
|
73 |
+
Yi-1.5-6B,Q4_0_4_4,6.061,3.478,17.017,2.945,llama_cpp,39.195
|
74 |
+
dolphin-2.9.4-gemma2-2b,Q8_0,3.204,3.405,13.966,3.381,llama_cpp,37.202
|
75 |
+
gemma-2-2b,Q8_0,3.204,3.405,13.996,3.385,llama_cpp,37.323
|
76 |
+
stable-code-instruct-3b,Q8_0,2.795,2.971,10.668,3.316,llama_cpp,29.886
|
77 |
+
Phi-3.5-mini-instruct,Q4_K_M,3.821,2.393,7.502,3.936,llama_cpp,41.082
|
78 |
+
Phi-3-mini-128k-instruct,Q4_K_M,3.821,2.393,7.519,3.938,llama_cpp,40.895
|
79 |
+
Llama-3.2-3B,Q4_K_M,3.607,2.335,10.691,4.674,llama_cpp,37.338
|
80 |
+
Llama-3.2-3B,Q4_0_4_4,3.607,2.233,31.72,5.025,llama_cpp,36.814
|
81 |
+
gemma-2-2b,Q4_K_M,3.204,2.186,14.202,5.253,llama_cpp,36.958
|
82 |
+
dolphin-2.9.4-gemma2-2b,Q4_K_M,3.204,2.186,14.218,5.253,llama_cpp,37.302
|
83 |
+
Qwen2.5-3B,Q4_K_M,3.397,2.179,10.638,4.808,llama_cpp,38.162
|
84 |
+
Phi-3.5-mini-instruct,Q4_0_4_4,3.821,2.175,23.369,4.428,llama_cpp,41.383
|
85 |
+
Phi-3-mini-128k-instruct,Q4_0_4_4,3.821,2.175,23.461,4.436,llama_cpp,40.608
|
86 |
+
gemma-2-2b,Q4_0_4_4,3.204,2.107,40.616,5.552,llama_cpp,37.374
|
87 |
+
dolphin-2.9.4-gemma2-2b,Q4_0_4_4,3.204,2.107,40.977,5.58,llama_cpp,37.051
|
88 |
+
Qwen2.5-3B,Q4_0_4_4,3.397,2.072,32.434,5.239,llama_cpp,37.912
|
89 |
+
internlm2_5-1_8b-chat,Q8_0,1.889,2.007,19.329,5.279,llama_cpp,33.996
|
90 |
+
SmolLM2-1.7B-Instruct,Q8_0,1.812,1.926,17.524,5.177,llama_cpp,35.989
|
91 |
+
Qwen2.5-1.5B,Q8_0,1.777,1.889,21.927,5.793,llama_cpp,35.81
|
92 |
+
stable-code-instruct-3b,Q4_K_M,2.795,1.707,10.803,5.564,llama_cpp,29.8
|
93 |
+
stable-code-instruct-3b,Q4_0_4_4,2.795,1.607,28.926,5.957,llama_cpp,29.843
|
94 |
+
Llama-3.2-1B,Q8_0,1.498,1.592,29.722,7.295,llama_cpp,33.974
|
95 |
+
Yi-Coder-1.5B,Q8_0,1.476,1.569,23.894,6.596,llama_cpp,29.334
|
96 |
+
OLMo-1B-0724-hf,Q8_0,1.28,1.36,27.787,7.591,llama_cpp,31.693
|
97 |
+
Qwen2.5-1.5B,Q4_K_M,1.777,1.172,22.326,9.56,llama_cpp,35.832
|
98 |
+
internlm2_5-1_8b-chat,Q4_K_M,1.889,1.17,19.453,8.56,llama_cpp,33.709
|
99 |
+
TinyLlama-1.1B-Chat-v1.0,Q8_0,1.1,1.169,28.472,8.637,llama_cpp,30.897
|
100 |
+
TinyLlama_v1.1,Q8_0,1.1,1.169,28.538,8.652,llama_cpp,28.186
|
101 |
+
SmolLM2-1.7B-Instruct,Q4_K_M,1.812,1.136,17.72,8.497,llama_cpp,35.358
|
102 |
+
Qwen2.5-1.5B,Q4_0_4_4,1.777,1.12,65.915,10.128,llama_cpp,35.064
|
103 |
+
internlm2_5-1_8b-chat,Q4_0_4_4,1.889,1.112,57.736,9.243,llama_cpp,32.21
|
104 |
+
SmolLM2-1.7B-Instruct,Q4_0_4_4,1.812,1.072,50.27,9.239,llama_cpp,35.136
|
105 |
+
Llama-3.2-1B,Q4_K_M,1.498,1.015,30.451,11.51,llama_cpp,33.472
|
106 |
+
Llama-3.2-1B,Q4_0_4_4,1.498,0.979,86.772,12.364,llama_cpp,33.386
|
107 |
+
Yi-Coder-1.5B,Q4_K_M,1.476,0.962,23.267,10.03,llama_cpp,29.391
|
108 |
+
Yi-Coder-1.5B,Q4_0_4_4,1.476,0.865,67.713,11.422,llama_cpp,29.24
|
109 |
+
OLMo-1B-0724-hf,Q4_K_M,1.28,0.79,28.276,12.321,llama_cpp,31.865
|
110 |
+
OLMo-1B-0724-hf,Q4_0_4_4,1.28,0.746,84.882,13.339,llama_cpp,31.457
|
111 |
+
Qwen2.5-0.5B,Q8_0,0.63,0.67,75.456,18.06,llama_cpp,31.937
|
112 |
+
TinyLlama-1.1B-Chat-v1.0,Q4_K_M,1.1,0.667,29.44,14.305,llama_cpp,30.653
|
113 |
+
TinyLlama_v1.1,Q4_K_M,1.1,0.667,29.397,14.346,llama_cpp,28.043
|
114 |
+
TinyLlama-1.1B-Chat-v1.0,Q4_0_4_4,1.1,0.636,77.823,15.509,llama_cpp,30.861
|
115 |
+
TinyLlama_v1.1,Q4_0_4_4,1.1,0.636,77.943,15.543,llama_cpp,28.315
|
116 |
+
Qwen2.5-0.5B,Q4_K_M,0.63,0.537,52.916,22.324,llama_cpp,31.442
|
117 |
+
Qwen2.5-0.5B,Q4_0_4_4,0.63,0.491,189.874,26.738,llama_cpp,31.256
|
118 |
+
gpt2-medium,Q8_0,0.406,0.436,83.423,23.016,llama_cpp,29.032
|
119 |
+
SmolLM2-360M-Instruct,Q8_0,0.409,0.435,79.518,22.857,llama_cpp,32.303
|
120 |
+
SmolLM2-360M-Instruct,Q4_K_M,0.409,0.319,55.774,30.718,llama_cpp,31.944
|
121 |
+
SmolLM2-360M-Instruct,Q4_0_4_4,0.409,0.277,173.275,37.176,llama_cpp,32.038
|
122 |
+
gpt2-medium,Q4_K_M,0.406,0.269,73.615,33.913,llama_cpp,28.81
|
123 |
+
gpt2-medium,Q4_0_4_4,0.406,0.247,178.73,37.89,llama_cpp,28.824
|
124 |
+
gpt2,Q8_0,0.163,0.176,302.932,68.191,llama_cpp,27.24
|
125 |
+
SmolLM2-135M-Instruct,Q8_0,0.163,0.173,212.146,57.992,llama_cpp,29.893
|
126 |
+
SmolLM2-135M-Instruct,Q4_K_M,0.163,0.134,153.439,73.272,llama_cpp,29.492
|
127 |
+
SmolLM2-135M-Instruct,Q4_0_4_4,0.163,0.12,381.667,86.735,llama_cpp,29.821
|
128 |
+
gpt2,Q4_K_M,0.163,0.111,269.906,92.707,llama_cpp,27.598
|
129 |
+
gpt2,Q4_0_4_4,0.163,0.105,582.32,101.509,llama_cpp,27.899
|
src/leaderboard.py
CHANGED
@@ -16,6 +16,7 @@ LEADERBOARD_COLUMN_TO_DATATYPE = {
|
|
16 |
# "Reserved Memory (MB)": "number",
|
17 |
# "Used Memory (MB)": "number",
|
18 |
"Params (B)": "number",
|
|
|
19 |
}
|
20 |
|
21 |
PRIMARY_COLUMNS = [
|
@@ -24,6 +25,7 @@ PRIMARY_COLUMNS = [
|
|
24 |
"Prefill (tokens/s)",
|
25 |
"Decode (tokens/s)",
|
26 |
"Model Size (GB)",
|
|
|
27 |
]
|
28 |
|
29 |
|
|
|
16 |
# "Reserved Memory (MB)": "number",
|
17 |
# "Used Memory (MB)": "number",
|
18 |
"Params (B)": "number",
|
19 |
+
"MMLU Accuracy": "number",
|
20 |
}
|
21 |
|
22 |
PRIMARY_COLUMNS = [
|
|
|
25 |
"Prefill (tokens/s)",
|
26 |
"Decode (tokens/s)",
|
27 |
"Model Size (GB)",
|
28 |
+
"MMLU Accuracy"
|
29 |
]
|
30 |
|
31 |
|
src/llm_perf.py
CHANGED
@@ -5,21 +5,21 @@ import pandas as pd
|
|
5 |
|
6 |
DATASET_DIRECTORY = "dataset"
|
7 |
|
8 |
-
COLUMNS_MAPPING = {
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
}
|
21 |
-
SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)"]
|
22 |
-
SORTING_ASCENDING = [False, True, True]
|
23 |
|
24 |
|
25 |
def get_raw_llm_perf_df(
|
@@ -28,7 +28,7 @@ def get_raw_llm_perf_df(
|
|
28 |
dfs = []
|
29 |
try:
|
30 |
dfs.append(
|
31 |
-
pd.read_csv("/Users/arnavchavan/leaderboard/
|
32 |
# pd.read_csv(
|
33 |
# f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv"
|
34 |
# )
|
@@ -68,6 +68,7 @@ def processed_llm_perf_df(llm_perf_df):
|
|
68 |
"Decode (tokens/s)": 3,
|
69 |
"Model Size (GB)": 3,
|
70 |
"#Params (B)": 3,
|
|
|
71 |
}
|
72 |
)
|
73 |
# sort by metric
|
|
|
5 |
|
6 |
DATASET_DIRECTORY = "dataset"
|
7 |
|
8 |
+
# COLUMNS_MAPPING = {
|
9 |
+
# "config.name": "Quantization",
|
10 |
+
# "config.backend.model": "Model",
|
11 |
+
# # primary measurements
|
12 |
+
# "report.prefill.throughput.value": "Prefill (tokens/s)",
|
13 |
+
# "report.decode.throughput.value": "Decode (tokens/s)",
|
14 |
+
# "report.memory": "Model Size (GB)",
|
15 |
+
# # deployment settings
|
16 |
+
# "config.backend.name": "Backend",
|
17 |
+
# "quantization": "Quantization",
|
18 |
+
# # additional information
|
19 |
+
# "#Params (B)": "Params (B)",
|
20 |
+
# }
|
21 |
+
SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)", "MMLU Accuracy"]
|
22 |
+
SORTING_ASCENDING = [False, True, True, True]
|
23 |
|
24 |
|
25 |
def get_raw_llm_perf_df(
|
|
|
28 |
dfs = []
|
29 |
try:
|
30 |
dfs.append(
|
31 |
+
pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results_with_mmlu.csv")
|
32 |
# pd.read_csv(
|
33 |
# f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv"
|
34 |
# )
|
|
|
68 |
"Decode (tokens/s)": 3,
|
69 |
"Model Size (GB)": 3,
|
70 |
"#Params (B)": 3,
|
71 |
+
"MMLU Accuracy": 3,
|
72 |
}
|
73 |
)
|
74 |
# sort by metric
|