Spaces:
Build error
Build error
File size: 31,776 Bytes
81170fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import jax
from jax import lax
from jax.nn import initializers
import jax.numpy as jnp
import flax
from flax.linen.module import merge_param
import flax.linen as nn
from typing import Callable, Iterable, Optional, Tuple, Union, Any
import functools
import pickle
from . import utils
PRNGKey = Any
Array = Any
Shape = Tuple[int]
Dtype = Any
class InceptionV3(nn.Module):
"""
InceptionV3 network.
Reference: https://arxiv.org/abs/1512.00567
Ported mostly from: https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
Attributes:
include_head (bool): If True, include classifier head.
num_classes (int): Number of classes.
pretrained (bool): If True, use pretrained weights.
transform_input (bool): If True, preprocesses the input according to the method with which it
was trained on ImageNet.
aux_logits (bool): If True, add an auxiliary branch that can improve training.
dtype (str): Data type.
"""
include_head: bool=False
num_classes: int=1000
pretrained: bool=False
transform_input: bool=False
aux_logits: bool=False
ckpt_path: str='https://www.dropbox.com/s/0zo4pd6cfwgzem7/inception_v3_weights_fid.pickle?dl=1'
dtype: str='float32'
def setup(self):
if self.pretrained:
ckpt_file = utils.download(self.ckpt_path)
self.params_dict = pickle.load(open(ckpt_file, 'rb'))
self.num_classes_ = 1000
else:
self.params_dict = None
self.num_classes_ = self.num_classes
@nn.compact
def __call__(self, x, train=True, rng=jax.random.PRNGKey(0)):
"""
Args:
x (tensor): Input image, shape [B, H, W, C].
train (bool): If True, training mode.
rng (jax.random.PRNGKey): Random seed.
"""
x = self._transform_input(x)
x = BasicConv2d(out_channels=32,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'Conv2d_1a_3x3'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=32,
kernel_size=(3, 3),
params_dict=utils.get(self.params_dict, 'Conv2d_2a_3x3'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=64,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'Conv2d_2b_3x3'),
dtype=self.dtype)(x, train)
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
x = BasicConv2d(out_channels=80,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'Conv2d_3b_1x1'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=192,
kernel_size=(3, 3),
params_dict=utils.get(self.params_dict, 'Conv2d_4a_3x3'),
dtype=self.dtype)(x, train)
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
x = InceptionA(pool_features=32,
params_dict=utils.get(self.params_dict, 'Mixed_5b'),
dtype=self.dtype)(x, train)
x = InceptionA(pool_features=64,
params_dict=utils.get(self.params_dict, 'Mixed_5c'),
dtype=self.dtype)(x, train)
x = InceptionA(pool_features=64,
params_dict=utils.get(self.params_dict, 'Mixed_5d'),
dtype=self.dtype)(x, train)
x = InceptionB(params_dict=utils.get(self.params_dict, 'Mixed_6a'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=128,
params_dict=utils.get(self.params_dict, 'Mixed_6b'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=160,
params_dict=utils.get(self.params_dict, 'Mixed_6c'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=160,
params_dict=utils.get(self.params_dict, 'Mixed_6d'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=192,
params_dict=utils.get(self.params_dict, 'Mixed_6e'),
dtype=self.dtype)(x, train)
aux = None
if self.aux_logits and train:
aux = InceptionAux(num_classes=self.num_classes_,
params_dict=utils.get(self.params_dict, 'AuxLogits'),
dtype=self.dtype)(x, train)
x = InceptionD(params_dict=utils.get(self.params_dict, 'Mixed_7a'),
dtype=self.dtype)(x, train)
x = InceptionE(avg_pool, params_dict=utils.get(self.params_dict, 'Mixed_7b'),
dtype=self.dtype)(x, train)
# Following the implementation by @mseitzer, we use max pooling instead
# of average pooling here.
# See: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/inception.py#L320
x = InceptionE(nn.max_pool, params_dict=utils.get(self.params_dict, 'Mixed_7c'),
dtype=self.dtype)(x, train)
x = jnp.mean(x, axis=(1, 2), keepdims=True)
if not self.include_head:
return x
x = nn.Dropout(rate=0.5)(x, deterministic=not train, rng=rng)
x = jnp.reshape(x, newshape=(x.shape[0], -1))
x = Dense(features=self.num_classes_,
params_dict=utils.get(self.params_dict, 'fc'),
dtype=self.dtype)(x)
if self.aux_logits:
return x, aux
return x
def _transform_input(self, x):
if self.transform_input:
x_ch0 = jnp.expand_dims(x[..., 0], axis=-1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = jnp.expand_dims(x[..., 1], axis=-1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = jnp.expand_dims(x[..., 2], axis=-1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = jnp.concatenate((x_ch0, x_ch1, x_ch2), axis=-1)
return x
class Dense(nn.Module):
features: int
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x):
x = nn.Dense(features=self.features,
kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['kernel']),
bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['bias']))(x)
return x
class BasicConv2d(nn.Module):
out_channels: int
kernel_size: Union[int, Iterable[int]]=(3, 3)
strides: Optional[Iterable[int]]=(1, 1)
padding: Union[str, Iterable[Tuple[int, int]]]='valid'
use_bias: bool=False
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
x = nn.Conv(features=self.out_channels,
kernel_size=self.kernel_size,
strides=self.strides,
padding=self.padding,
use_bias=self.use_bias,
kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['kernel']),
bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['bias']),
dtype=self.dtype)(x)
if self.params_dict is None:
x = BatchNorm(epsilon=0.001,
momentum=0.1,
use_running_average=not train,
dtype=self.dtype)(x)
else:
x = BatchNorm(epsilon=0.001,
momentum=0.1,
bias_init=lambda *_ : jnp.array(self.params_dict['bn']['bias']),
scale_init=lambda *_ : jnp.array(self.params_dict['bn']['scale']),
mean_init=lambda *_ : jnp.array(self.params_dict['bn']['mean']),
var_init=lambda *_ : jnp.array(self.params_dict['bn']['var']),
use_running_average=not train,
dtype=self.dtype)(x)
x = jax.nn.relu(x)
return x
class InceptionA(nn.Module):
pool_features: int
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch5x5 = BasicConv2d(out_channels=48,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch5x5_1'),
dtype=self.dtype)(x, train)
branch5x5 = BasicConv2d(out_channels=64,
kernel_size=(5, 5),
padding=((2, 2), (2, 2)),
params_dict=utils.get(self.params_dict, 'branch5x5_2'),
dtype=self.dtype)(branch5x5, train)
branch3x3dbl = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'),
dtype=self.dtype)(branch3x3dbl, train)
branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=self.pool_features,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch5x5, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionB(nn.Module):
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch3x3 = BasicConv2d(out_channels=384,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'),
dtype=self.dtype)(branch3x3dbl, train)
branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
output = jnp.concatenate((branch3x3, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionC(nn.Module):
channels_7x7: int
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch7x7 = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7_1'),
dtype=self.dtype)(x, train)
branch7x7 = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7_2'),
dtype=self.dtype)(branch7x7, train)
branch7x7 = BasicConv2d(out_channels=192,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7_3'),
dtype=self.dtype)(branch7x7, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_1'),
dtype=self.dtype)(x, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_2'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_3'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_4'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_5'),
dtype=self.dtype)(branch7x7dbl, train)
branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch7x7, branch7x7dbl, branch_pool), axis=-1)
return output
class InceptionD(nn.Module):
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch3x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3_1'),
dtype=self.dtype)(x, train)
branch3x3 = BasicConv2d(out_channels=320,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3_2'),
dtype=self.dtype)(branch3x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7x3_1'),
dtype=self.dtype)(x, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7x3_2'),
dtype=self.dtype)(branch7x7x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7x3_3'),
dtype=self.dtype)(branch7x7x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch7x7x3_4'),
dtype=self.dtype)(branch7x7x3, train)
branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
output = jnp.concatenate((branch3x3, branch7x7x3, branch_pool), axis=-1)
return output
class InceptionE(nn.Module):
pooling: Callable
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=320,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch3x3 = BasicConv2d(out_channels=384,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3_1'),
dtype=self.dtype)(x, train)
branch3x3_a = BasicConv2d(out_channels=384,
kernel_size=(1, 3),
padding=((0, 0), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3_2a'),
dtype=self.dtype)(branch3x3, train)
branch3x3_b = BasicConv2d(out_channels=384,
kernel_size=(3, 1),
padding=((1, 1), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch3x3_2b'),
dtype=self.dtype)(branch3x3, train)
branch3x3 = jnp.concatenate((branch3x3_a, branch3x3_b), axis=-1)
branch3x3dbl = BasicConv2d(out_channels=448,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=384,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl_a = BasicConv2d(out_channels=384,
kernel_size=(1, 3),
padding=((0, 0), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3a'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl_b = BasicConv2d(out_channels=384,
kernel_size=(3, 1),
padding=((1, 1), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3b'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = jnp.concatenate((branch3x3dbl_a, branch3x3dbl_b), axis=-1)
branch_pool = self.pooling(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch3x3, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionAux(nn.Module):
num_classes: int
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
x = avg_pool(x, window_shape=(5, 5), strides=(3, 3))
x = BasicConv2d(out_channels=128,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'conv0'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=768,
kernel_size=(5, 5),
params_dict=utils.get(self.params_dict, 'conv1'),
dtype=self.dtype)(x, train)
x = jnp.mean(x, axis=(1, 2))
x = jnp.reshape(x, newshape=(x.shape[0], -1))
x = Dense(features=self.num_classes,
params_dict=utils.get(self.params_dict, 'fc'),
dtype=self.dtype)(x)
return x
def _absolute_dims(rank, dims):
return tuple([rank + dim if dim < 0 else dim for dim in dims])
class BatchNorm(nn.Module):
"""BatchNorm Module.
Taken from: https://github.com/google/flax/blob/master/flax/linen/normalization.py
Attributes:
use_running_average: if True, the statistics stored in batch_stats
will be used instead of computing the batch statistics on the input.
axis: the feature or non-batch axis of the input.
momentum: decay rate for the exponential moving average of the batch statistics.
epsilon: a small float added to variance to avoid dividing by zero.
dtype: the dtype of the computation (default: float32).
use_bias: if True, bias (beta) is added.
use_scale: if True, multiply by scale (gamma).
When the next layer is linear (also e.g. nn.relu), this can be disabled
since the scaling will be done by the next layer.
bias_init: initializer for bias, by default, zero.
scale_init: initializer for scale, by default, one.
axis_name: the axis name used to combine batch statistics from multiple
devices. See `jax.pmap` for a description of axis names (default: None).
axis_index_groups: groups of axis indices within that named axis
representing subsets of devices to reduce over (default: None). For
example, `[[0, 1], [2, 3]]` would independently batch-normalize over
the examples on the first two and last two devices. See `jax.lax.psum`
for more details.
"""
use_running_average: Optional[bool] = None
axis: int = -1
momentum: float = 0.99
epsilon: float = 1e-5
dtype: Dtype = jnp.float32
use_bias: bool = True
use_scale: bool = True
bias_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.zeros
scale_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.ones
mean_init: Callable[[Shape], Array] = lambda s: jnp.zeros(s, jnp.float32)
var_init: Callable[[Shape], Array] = lambda s: jnp.ones(s, jnp.float32)
axis_name: Optional[str] = None
axis_index_groups: Any = None
@nn.compact
def __call__(self, x, use_running_average: Optional[bool] = None):
"""Normalizes the input using batch statistics.
NOTE:
During initialization (when parameters are mutable) the running average
of the batch statistics will not be updated. Therefore, the inputs
fed during initialization don't need to match that of the actual input
distribution and the reduction axis (set with `axis_name`) does not have
to exist.
Args:
x: the input to be normalized.
use_running_average: if true, the statistics stored in batch_stats
will be used instead of computing the batch statistics on the input.
Returns:
Normalized inputs (the same shape as inputs).
"""
use_running_average = merge_param(
'use_running_average', self.use_running_average, use_running_average)
x = jnp.asarray(x, jnp.float32)
axis = self.axis if isinstance(self.axis, tuple) else (self.axis,)
axis = _absolute_dims(x.ndim, axis)
feature_shape = tuple(d if i in axis else 1 for i, d in enumerate(x.shape))
reduced_feature_shape = tuple(d for i, d in enumerate(x.shape) if i in axis)
reduction_axis = tuple(i for i in range(x.ndim) if i not in axis)
# see NOTE above on initialization behavior
initializing = self.is_mutable_collection('params')
ra_mean = self.variable('batch_stats', 'mean',
self.mean_init,
reduced_feature_shape)
ra_var = self.variable('batch_stats', 'var',
self.var_init,
reduced_feature_shape)
if use_running_average:
mean, var = ra_mean.value, ra_var.value
else:
mean = jnp.mean(x, axis=reduction_axis, keepdims=False)
mean2 = jnp.mean(lax.square(x), axis=reduction_axis, keepdims=False)
if self.axis_name is not None and not initializing:
concatenated_mean = jnp.concatenate([mean, mean2])
mean, mean2 = jnp.split(
lax.pmean(
concatenated_mean,
axis_name=self.axis_name,
axis_index_groups=self.axis_index_groups), 2)
var = mean2 - lax.square(mean)
if not initializing:
ra_mean.value = self.momentum * ra_mean.value + (1 - self.momentum) * mean
ra_var.value = self.momentum * ra_var.value + (1 - self.momentum) * var
y = x - mean.reshape(feature_shape)
mul = lax.rsqrt(var + self.epsilon)
if self.use_scale:
scale = self.param('scale',
self.scale_init,
reduced_feature_shape).reshape(feature_shape)
mul = mul * scale
y = y * mul
if self.use_bias:
bias = self.param('bias',
self.bias_init,
reduced_feature_shape).reshape(feature_shape)
y = y + bias
return jnp.asarray(y, self.dtype)
def pool(inputs, init, reduce_fn, window_shape, strides, padding):
"""
Taken from: https://github.com/google/flax/blob/main/flax/linen/pooling.py
Helper function to define pooling functions.
Pooling functions are implemented using the ReduceWindow XLA op.
NOTE: Be aware that pooling is not generally differentiable.
That means providing a reduce_fn that is differentiable does not imply
that pool is differentiable.
Args:
inputs: input data with dimensions (batch, window dims..., features).
init: the initial value for the reduction
reduce_fn: a reduce function of the form `(T, T) -> T`.
window_shape: a shape tuple defining the window to reduce over.
strides: a sequence of `n` integers, representing the inter-window
strides.
padding: either the string `'SAME'`, the string `'VALID'`, or a sequence
of `n` `(low, high)` integer pairs that give the padding to apply before
and after each spatial dimension.
Returns:
The output of the reduction for each window slice.
"""
strides = strides or (1,) * len(window_shape)
assert len(window_shape) == len(strides), (
f"len({window_shape}) == len({strides})")
strides = (1,) + strides + (1,)
dims = (1,) + window_shape + (1,)
is_single_input = False
if inputs.ndim == len(dims) - 1:
# add singleton batch dimension because lax.reduce_window always
# needs a batch dimension.
inputs = inputs[None]
is_single_input = True
assert inputs.ndim == len(dims), f"len({inputs.shape}) != len({dims})"
if not isinstance(padding, str):
padding = tuple(map(tuple, padding))
assert(len(padding) == len(window_shape)), (
f"padding {padding} must specify pads for same number of dims as "
f"window_shape {window_shape}")
assert(all([len(x) == 2 for x in padding])), (
f"each entry in padding {padding} must be length 2")
padding = ((0,0),) + padding + ((0,0),)
y = jax.lax.reduce_window(inputs, init, reduce_fn, dims, strides, padding)
if is_single_input:
y = jnp.squeeze(y, axis=0)
return y
def avg_pool(inputs, window_shape, strides=None, padding='VALID'):
"""
Pools the input by taking the average over a window.
In comparison to flax.linen.avg_pool, this pooling operation does not
consider the padded zero's for the average computation.
Args:
inputs: input data with dimensions (batch, window dims..., features).
window_shape: a shape tuple defining the window to reduce over.
strides: a sequence of `n` integers, representing the inter-window
strides (default: `(1, ..., 1)`).
padding: either the string `'SAME'`, the string `'VALID'`, or a sequence
of `n` `(low, high)` integer pairs that give the padding to apply before
and after each spatial dimension (default: `'VALID'`).
Returns:
The average for each window slice.
"""
assert inputs.ndim == 4
assert len(window_shape) == 2
y = pool(inputs, 0., jax.lax.add, window_shape, strides, padding)
ones = jnp.ones(shape=(1, inputs.shape[1], inputs.shape[2], 1)).astype(inputs.dtype)
counts = jax.lax.conv_general_dilated(ones,
jnp.expand_dims(jnp.ones(window_shape).astype(inputs.dtype), axis=(-2, -1)),
window_strides=(1, 1),
padding=((1, 1), (1, 1)),
dimension_numbers=nn.linear._conv_dimension_numbers(ones.shape),
feature_group_count=1)
y = y / counts
return y
|