Spaces:
Build error
Build error
File size: 18,849 Bytes
81170fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import jax
import jax.numpy as jnp
import flax
from flax.optim import dynamic_scale as dynamic_scale_lib
from flax.core import frozen_dict
import optax
import numpy as np
import functools
import wandb
import time
import stylegan2
import data_pipeline
import checkpoint
import training_utils
import training_steps
from fid import FID
import logging
logger = logging.getLogger(__name__)
def tree_shape(item):
return jax.tree_map(lambda c: c.shape, item)
def train_and_evaluate(config):
num_devices = jax.device_count() # 8
num_local_devices = jax.local_device_count() # 4
num_workers = jax.process_count()
# --------------------------------------
# Data
# --------------------------------------
ds_train, dataset_info = data_pipeline.get_data(data_dir=config.data_dir,
img_size=config.resolution,
img_channels=config.img_channels,
num_classes=config.c_dim,
num_local_devices=num_local_devices,
batch_size=config.batch_size)
# --------------------------------------
# Seeding and Precision
# --------------------------------------
rng = jax.random.PRNGKey(config.random_seed)
if config.mixed_precision:
dtype = jnp.float16
elif config.bf16:
dtype = jnp.bfloat16
else:
dtype = jnp.float32
logger.info(f'Running on dtype {dtype}')
platform = jax.local_devices()[0].platform
if config.mixed_precision and platform == 'gpu':
dynamic_scale_G_main = dynamic_scale_lib.DynamicScale()
dynamic_scale_D_main = dynamic_scale_lib.DynamicScale()
dynamic_scale_G_reg = dynamic_scale_lib.DynamicScale()
dynamic_scale_D_reg = dynamic_scale_lib.DynamicScale()
clip_conv = 256
num_fp16_res = 4
else:
dynamic_scale_G_main = None
dynamic_scale_D_main = None
dynamic_scale_G_reg = None
dynamic_scale_D_reg = None
clip_conv = None
num_fp16_res = 0
# --------------------------------------
# Initialize Models
# --------------------------------------
logger.info('Initialize models...')
rng, init_rng = jax.random.split(rng)
# Generator initialization for training
start_mn = time.time()
logger.info("Creating MappingNetwork...")
mapping_net = stylegan2.MappingNetwork(z_dim=config.z_dim,
c_dim=config.c_dim,
w_dim=config.w_dim,
num_ws=int(np.log2(config.resolution)) * 2 - 3,
num_layers=8,
dtype=dtype)
mapping_net_vars = mapping_net.init(init_rng,
jnp.ones((1, config.z_dim)),
jnp.ones((1, config.c_dim)))
mapping_net_params, moving_stats = mapping_net_vars['params'], mapping_net_vars['moving_stats']
logger.info(f"MappingNetwork took {time.time() - start_mn:.2f}s")
logger.info("Creating SynthesisNetwork...")
start_sn = time.time()
synthesis_net = stylegan2.SynthesisNetwork(resolution=config.resolution,
num_channels=config.img_channels,
w_dim=config.w_dim,
fmap_base=config.fmap_base,
num_fp16_res=num_fp16_res,
clip_conv=clip_conv,
dtype=dtype)
synthesis_net_vars = synthesis_net.init(init_rng,
jnp.ones((1, mapping_net.num_ws, config.w_dim)))
synthesis_net_params, noise_consts = synthesis_net_vars['params'], synthesis_net_vars['noise_consts']
logger.info(f"SynthesisNetwork took {time.time() - start_sn:.2f}s")
params_G = frozen_dict.FrozenDict(
{'mapping': mapping_net_params,
'synthesis': synthesis_net_params}
)
# Discriminator initialization for training
logger.info("Creating Discriminator...")
start_d = time.time()
discriminator = stylegan2.Discriminator(resolution=config.resolution,
num_channels=config.img_channels,
c_dim=config.c_dim,
mbstd_group_size=config.mbstd_group_size,
num_fp16_res=num_fp16_res,
clip_conv=clip_conv,
dtype=dtype)
rng, init_rng = jax.random.split(rng)
params_D = discriminator.init(init_rng,
jnp.ones((1, config.resolution, config.resolution, config.img_channels)),
jnp.ones((1, config.c_dim)))
logger.info(f"Discriminator took {time.time() - start_d:.2f}s")
# Exponential average Generator initialization
logger.info("Creating Generator EMA...")
start_g = time.time()
generator_ema = stylegan2.Generator(resolution=config.resolution,
num_channels=config.img_channels,
z_dim=config.z_dim,
c_dim=config.c_dim,
w_dim=config.w_dim,
num_ws=int(np.log2(config.resolution)) * 2 - 3,
num_mapping_layers=8,
fmap_base=config.fmap_base,
num_fp16_res=num_fp16_res,
clip_conv=clip_conv,
dtype=dtype)
params_ema_G = generator_ema.init(init_rng,
jnp.ones((1, config.z_dim)),
jnp.ones((1, config.c_dim)))
logger.info(f"Took {time.time() - start_g:.2f}s")
# --------------------------------------
# Initialize States and Optimizers
# --------------------------------------
logger.info('Initialize states...')
tx_G = optax.adam(learning_rate=config.learning_rate, b1=0.0, b2=0.99)
tx_D = optax.adam(learning_rate=config.learning_rate, b1=0.0, b2=0.99)
state_G = training_utils.TrainStateG.create(apply_fn=None,
apply_mapping=mapping_net.apply,
apply_synthesis=synthesis_net.apply,
params=params_G,
moving_stats=moving_stats,
noise_consts=noise_consts,
tx=tx_G,
dynamic_scale_main=dynamic_scale_G_main,
dynamic_scale_reg=dynamic_scale_G_reg,
epoch=0)
state_D = training_utils.TrainStateD.create(apply_fn=discriminator.apply,
params=params_D,
tx=tx_D,
dynamic_scale_main=dynamic_scale_D_main,
dynamic_scale_reg=dynamic_scale_D_reg,
epoch=0)
# Copy over the parameters from the training generator to the ema generator
params_ema_G = training_utils.update_generator_ema(state_G, params_ema_G, config, ema_beta=0)
# Running mean of path length for path length regularization
pl_mean = jnp.zeros((), dtype=dtype)
step = 0
epoch_offset = 0
best_fid_score = np.inf
ckpt_path = None
if config.resume_run_id is not None:
# Resume training from existing checkpoint
ckpt_path = checkpoint.get_latest_checkpoint(config.ckpt_dir)
logger.info(f'Resume training from checkpoint: {ckpt_path}')
ckpt = checkpoint.load_checkpoint(ckpt_path)
step = ckpt['step']
epoch_offset = ckpt['epoch']
best_fid_score = ckpt['fid_score']
pl_mean = ckpt['pl_mean']
state_G = ckpt['state_G']
state_D = ckpt['state_D']
params_ema_G = ckpt['params_ema_G']
config = ckpt['config']
elif config.load_from_pkl is not None:
# Load checkpoint and start new run
ckpt_path = config.load_from_pkl
logger.info(f'Load model state from from : {ckpt_path}')
ckpt = checkpoint.load_checkpoint(ckpt_path)
pl_mean = ckpt['pl_mean']
state_G = ckpt['state_G']
state_D = ckpt['state_D']
params_ema_G = ckpt['params_ema_G']
# Replicate states across devices
pl_mean = flax.jax_utils.replicate(pl_mean)
state_G = flax.jax_utils.replicate(state_G)
state_D = flax.jax_utils.replicate(state_D)
# --------------------------------------
# Precompile train and eval steps
# --------------------------------------
logger.info('Precompile training steps...')
p_main_step_G = jax.pmap(training_steps.main_step_G, axis_name='batch')
p_regul_step_G = jax.pmap(functools.partial(training_steps.regul_step_G, config=config), axis_name='batch')
p_main_step_D = jax.pmap(training_steps.main_step_D, axis_name='batch')
p_regul_step_D = jax.pmap(functools.partial(training_steps.regul_step_D, config=config), axis_name='batch')
# --------------------------------------
# Training
# --------------------------------------
logger.info('Start training...')
fid_metric = FID(generator_ema, ds_train, config)
# Dict to collect training statistics / losses
metrics = {}
num_imgs_processed = 0
num_steps_per_epoch = dataset_info['num_examples'] // (config.batch_size * num_devices)
effective_batch_size = config.batch_size * num_devices
if config.wandb and jax.process_index() == 0:
# do some more logging
wandb.config.effective_batch_size = effective_batch_size
wandb.config.num_steps_per_epoch = num_steps_per_epoch
wandb.config.num_workers = num_workers
wandb.config.device_count = num_devices
wandb.config.num_examples = dataset_info['num_examples']
wandb.config.vm_name = training_utils.get_vm_name()
for epoch in range(epoch_offset, config.num_epochs):
if config.wandb and jax.process_index() == 0:
wandb.log({'training/epochs': epoch}, step=step)
for batch in data_pipeline.prefetch(ds_train, config.num_prefetch):
assert batch['image'].shape[1] == config.batch_size, f"Mismatched batch (batch size: {config.batch_size}, this batch: {batch['image'].shape[1]})"
# pbar.update(num_devices * config.batch_size)
iteration_start_time = time.time()
if config.c_dim == 0:
# No labels in the dataset
batch['label'] = None
# Create two latent noise vectors and combine them for the style mixing regularization
rng, key = jax.random.split(rng)
z_latent1 = jax.random.normal(key, (num_local_devices, config.batch_size, config.z_dim), dtype)
rng, key = jax.random.split(rng)
z_latent2 = jax.random.normal(key, (num_local_devices, config.batch_size, config.z_dim), dtype)
# Split PRNGs across devices
rkey = jax.random.split(key, num=num_local_devices)
mixing_prob = flax.jax_utils.replicate(config.mixing_prob)
# --------------------------------------
# Update Discriminator
# --------------------------------------
time_d_start = time.time()
state_D, metrics = p_main_step_D(state_G, state_D, batch, z_latent1, z_latent2, metrics, mixing_prob, rkey)
time_d_end = time.time()
if step % config.D_reg_interval == 0:
state_D, metrics = p_regul_step_D(state_D, batch, metrics)
# --------------------------------------
# Update Generator
# --------------------------------------
time_g_start = time.time()
state_G, metrics = p_main_step_G(state_G, state_D, batch, z_latent1, z_latent2, metrics, mixing_prob, rkey)
if step % config.G_reg_interval == 0:
H, W = batch['image'].shape[-3], batch['image'].shape[-2]
rng, key = jax.random.split(rng)
pl_noise = jax.random.normal(key, batch['image'].shape, dtype=dtype) / np.sqrt(H * W)
state_G, metrics, pl_mean = p_regul_step_G(state_G, batch, z_latent1, pl_noise, pl_mean, metrics,
rng=rkey)
params_ema_G = training_utils.update_generator_ema(flax.jax_utils.unreplicate(state_G),
params_ema_G,
config)
time_g_end = time.time()
# --------------------------------------
# Logging and Checkpointing
# --------------------------------------
if step % config.save_every == 0 and config.disable_fid:
# If FID evaluation is disabled, a checkpoint will be saved every 'save_every' steps.
if jax.process_index() == 0:
logger.info('Saving checkpoint...')
checkpoint.save_checkpoint(config.ckpt_dir, state_G, state_D, params_ema_G, pl_mean, config, step,
epoch)
num_imgs_processed += num_devices * config.batch_size
if step % config.eval_fid_every == 0 and not config.disable_fid:
# If FID evaluation is enabled, only save a checkpoint if FID score is better.
if jax.process_index() == 0:
logger.info('Computing FID...')
fid_score = fid_metric.compute_fid(params_ema_G).item()
if config.wandb:
wandb.log({'training/gen/fid': fid_score}, step=step)
logger.info(f'Computed FID: {fid_score:.2f}')
if fid_score < best_fid_score:
best_fid_score = fid_score
logger.info(f'New best FID score ({best_fid_score:.3f}). Saving checkpoint...')
ts = time.time()
checkpoint.save_checkpoint(config.ckpt_dir, state_G, state_D, params_ema_G, pl_mean, config, step, epoch, fid_score=fid_score)
te = time.time()
logger.info(f'... successfully saved checkpoint in {(te-ts)/60:.1f}min')
sec_per_kimg = (time.time() - iteration_start_time) / (num_devices * config.batch_size / 1000.0)
time_taken_g = time_g_end - time_g_start
time_taken_d = time_d_end - time_d_start
time_taken_per_step = time.time() - iteration_start_time
g_loss = jnp.mean(metrics['G_loss']).item()
d_loss = jnp.mean(metrics['D_loss']).item()
if config.wandb and jax.process_index() == 0:
# wandb logging - happens every step
wandb.log({'training/gen/loss': jnp.mean(metrics['G_loss']).item()}, step=step, commit=False)
wandb.log({'training/dis/loss': jnp.mean(metrics['D_loss']).item()}, step=step, commit=False)
wandb.log({'training/dis/fake_logits': jnp.mean(metrics['fake_logits']).item()}, step=step, commit=False)
wandb.log({'training/dis/real_logits': jnp.mean(metrics['real_logits']).item()}, step=step, commit=False)
wandb.log({'training/time_taken_g': time_taken_g, 'training/time_taken_d': time_taken_d}, step=step, commit=False)
wandb.log({'training/time_taken_per_step': time_taken_per_step}, step=step, commit=False)
wandb.log({'training/num_imgs_trained': num_imgs_processed}, step=step, commit=False)
wandb.log({'training/sec_per_kimg': sec_per_kimg}, step=step)
if step % config.log_every == 0:
# console logging - happens every log_every steps
logger.info(f'Total steps: {step:>6,} - epoch {epoch:>3,}/{config.num_epochs} @ {step % num_steps_per_epoch:>6,}/{num_steps_per_epoch:,} - G loss: {g_loss:.5f} - D loss: {d_loss:.5f} - sec/kimg: {sec_per_kimg:.2f}s - time per step: {time_taken_per_step:.3f}s')
if step % config.generate_samples_every == 0 and config.wandb and jax.process_index() == 0:
# Generate training images
train_snapshot = training_utils.get_training_snapshot(
image_real=flax.jax_utils.unreplicate(batch['image']),
image_gen=flax.jax_utils.unreplicate(metrics['image_gen']),
max_num=10
)
wandb.log({'training/snapshot': wandb.Image(train_snapshot)}, commit=False, step=step)
# Generate evaluation images
labels = None if config.c_dim == 0 else batch['label'][0]
image_gen_eval = training_steps.eval_step_G(
generator_ema, params=params_ema_G,
z_latent=z_latent1[0],
labels=labels,
truncation=1
)
image_gen_eval_trunc = training_steps.eval_step_G(
generator_ema,
params=params_ema_G,
z_latent=z_latent1[0],
labels=labels,
truncation=0.5
)
eval_snapshot = training_utils.get_eval_snapshot(image=image_gen_eval, max_num=10)
eval_snapshot_trunc = training_utils.get_eval_snapshot(image=image_gen_eval_trunc, max_num=10)
wandb.log({'eval/snapshot': wandb.Image(eval_snapshot)}, commit=False, step=step)
wandb.log({'eval/snapshot_trunc': wandb.Image(eval_snapshot_trunc)}, step=step)
step += 1
# Sync moving stats across devices
state_G = training_utils.sync_moving_stats(state_G)
# Sync moving average of path length mean (Generator regularization)
pl_mean = jax.pmap(lambda x: jax.lax.pmean(x, axis_name='batch'), axis_name='batch')(pl_mean)
|