File size: 11,264 Bytes
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# imports
import os
import json
import base64
from io import BytesIO
from dotenv import load_dotenv
from openai import OpenAI
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import requests
import torch
from transformers import (
    AutoProcessor, 
    Owlv2ForObjectDetection,
    AutoModelForZeroShotObjectDetection
)
# from transformers import AutoProcessor, Owlv2ForObjectDetection
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

# Initialization
load_dotenv()
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
MODEL = "gpt-4o"
openai = OpenAI()

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
# Owlv2
owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# DINO
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)

system_message = """You are an expert in object detection. When users mention:
1. "count [object(s)]" - Use detect_objects with proper format based on model
2. "detect [object(s)]" - Same as count
3. "show [object(s)]" - Same as count

For DINO model: Format queries as "a [object]." (e.g., "a frog.")
For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]

Always use object detection tool when counting/detecting is mentioned."""

system_message += "Always be accurate. If you don't know the answer, say so."


class State:
    def __init__(self):
        self.current_image = None
        self.last_prediction = None
        self.current_model = "owlv2"  # Default model

state = State()

def get_preprocessed_image(pixel_values):
    pixel_values = pixel_values.squeeze().numpy()
    unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
    unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
    unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
    return unnormalized_image

def encode_image_to_base64(image_array):
    if image_array is None:
        return None
    image = Image.fromarray(image_array)
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode('utf-8')


def format_query_for_model(text_input, model_type="owlv2"):
    """Format query based on model requirements"""
    # Extract objects (e.g., "count frogs and horses" -> ["frog", "horse"])
    text = text_input.lower()
    words = [w.strip('.,?!') for w in text.split() 
             if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
    
    if model_type == "owlv2":
        return [["a photo of " + obj for obj in words]]
    else:  # DINO
        # DINO only works with single object queries with format "a object."
        return f"a {words[0]}."

def detect_objects(query_text):
    if state.current_image is None:
        return {"count": 0, "message": "No image provided"}
    
    image = Image.fromarray(state.current_image)
    draw = ImageDraw.Draw(image)
    
    if state.current_model == "owlv2":
        inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = owlv2_model(**inputs)
        results = owlv2_processor.post_process_object_detection(
            outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
        )
    else:  # DINO
        inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = dino_model(**inputs)
        results = dino_processor.post_process_grounded_object_detection(
            outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
            target_sizes=[image.size[::-1]]
        )
    
    # Draw detection boxes
    boxes = results[0]["boxes"]
    scores = results[0]["scores"]
    
    for box, score in zip(boxes, scores):
        box = [round(i) for i in box.tolist()]
        draw.rectangle(box, outline="red", width=3)
        draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
    
    state.last_prediction = np.array(image)
    return {
        "count": len(boxes),
        "confidence": scores.tolist(),
        "message": f"Detected {len(boxes)} objects"
    }


def identify_plant():
    if state.current_image is None:
        return {"error": "No image provided"}
    
    image = Image.fromarray(state.current_image)
    img_byte_arr = BytesIO()
    image.save(img_byte_arr, format='JPEG')
    img_byte_arr = img_byte_arr.getvalue()
    
    api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
    files = [('images', ('image.jpg', img_byte_arr))]
    data = {'organs': ['leaf']}
    
    try:
        response = requests.post(api_endpoint, files=files, data=data)
        if response.status_code == 200:
            result = response.json()
            best_match = result['results'][0]
            return {
                "scientific_name": best_match['species']['scientificName'],
                "common_names": best_match['species'].get('commonNames', []),
                "family": best_match['species']['family']['scientificName'],
                "genus": best_match['species']['genus']['scientificName'],
                "confidence": f"{best_match['score']*100:.1f}%"
            }
        else:
            return {"error": f"API Error: {response.status_code}"}
    except Exception as e:
        return {"error": f"Error: {str(e)}"}

# Tool definitions
object_detection_function = {
    "name": "detect_objects",
    "description": "Use this function to detect and count objects in images based on text queries.",
    "parameters": {
        "type": "object",
        "properties": {
            "query_text": {
                "type": "array",
                "description": "List of text queries describing objects to detect",
                "items": {"type": "string"}
            }
        }
    }
}

plant_identification_function = {
    "name": "identify_plant",
    "description": "Use this when asked about plant species identification or botanical classification.",
    "parameters": {
        "type": "object",
        "properties": {},
        "required": []
    }
}

tools = [
    {"type": "function", "function": object_detection_function},
    {"type": "function", "function": plant_identification_function}
]

def format_tool_response(tool_response_content):
    data = json.loads(tool_response_content)
    if "error" in data:
        return f"Error: {data['error']}"
    elif "scientific_name" in data:
        return f"""πŸ“‹ Plant Identification Results:
        
🌿 Scientific Name: {data['scientific_name']}
πŸ‘₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
πŸ‘ͺ Family: {data['family']}
🎯 Confidence: {data['confidence']}"""
    else:
        return f"I detected {data['count']} objects in the image."

def chat(message, image, history):
    if image is not None:
        state.current_image = image
    
    if state.current_image is None:
        return "Please upload an image first.", None
    
    base64_image = encode_image_to_base64(state.current_image)
    messages = [{"role": "system", "content": system_message}]
    
    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    
    # Extract objects to detect from user message
    # This could be enhanced with better NLP
    objects_to_detect = message.lower()
    formatted_query = format_query_for_model(objects_to_detect, state.current_model)
    
    messages.append({
        "role": "user",
        "content": [
            {"type": "text", "text": message},
            {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
        ]
    })

    response = openai.chat.completions.create(
        model=MODEL,
        messages=messages,
        tools=tools,
        max_tokens=300
    )

    if response.choices[0].finish_reason == "tool_calls":
        message = response.choices[0].message
        messages.append(message)
        
        for tool_call in message.tool_calls:
            if tool_call.function.name == "detect_objects":
                results = detect_objects(formatted_query)
            else:
                results = identify_plant()
                
            tool_response = {
                "role": "tool",
                "content": json.dumps(results),
                "tool_call_id": tool_call.id
            }
            messages.append(tool_response)

        response = openai.chat.completions.create(
            model=MODEL,
            messages=messages,
            max_tokens=300
        )

    return response.choices[0].message.content, state.last_prediction

def update_model(choice):
    print(f"Model switched to: {choice}")
    state.current_model = choice.lower()
    return f"Model switched to {choice}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Object Detection and Plant Analysis System")
    
    with gr.Row():
        with gr.Column():
            model_choice = gr.Radio(
                choices=["Owlv2", "DINO"],
                value="Owlv2",
                label="Select Detection Model",
                interactive=True
            )
            image_input = gr.Image(type="numpy", label="Upload Image")
            text_input = gr.Textbox(
                label="Ask about the image",
                placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
            )
            with gr.Row():
                submit_btn = gr.Button("Analyze")
                reset_btn = gr.Button("Reset")
        
        with gr.Column():
            chatbot = gr.Chatbot()
            # output_image = gr.Image(label="Detected Objects")
            output_image = gr.Image(type="numpy", label="Detected Objects")
    
    def process_interaction(message, image, history):
        response, pred_image = chat(message, image, history)
        history.append((message, response))
        return "", pred_image, history
    
    def reset_interface():
        state.current_image = None
        state.last_prediction = None
        return None, None, None, []
    
    model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
    
    submit_btn.click(
        fn=process_interaction,
        inputs=[text_input, image_input, chatbot],
        outputs=[text_input, output_image, chatbot]
    )
    
    reset_btn.click(
        fn=reset_interface,
        inputs=[],
        outputs=[image_input, output_image, text_input, chatbot]
    )

    gr.Markdown("""## Instructions
1. Select the detection model (Owlv2 or DINO)
2. Upload an image
3. Ask specific questions about objects or plants
4. Click Analyze to get results""")

demo.launch(share=True)