File size: 11,264 Bytes
70a1336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# imports
import os
import json
import base64
from io import BytesIO
from dotenv import load_dotenv
from openai import OpenAI
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import requests
import torch
from transformers import (
AutoProcessor,
Owlv2ForObjectDetection,
AutoModelForZeroShotObjectDetection
)
# from transformers import AutoProcessor, Owlv2ForObjectDetection
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
# Initialization
load_dotenv()
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
MODEL = "gpt-4o"
openai = OpenAI()
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
# Owlv2
owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# DINO
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
system_message = """You are an expert in object detection. When users mention:
1. "count [object(s)]" - Use detect_objects with proper format based on model
2. "detect [object(s)]" - Same as count
3. "show [object(s)]" - Same as count
For DINO model: Format queries as "a [object]." (e.g., "a frog.")
For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]
Always use object detection tool when counting/detecting is mentioned."""
system_message += "Always be accurate. If you don't know the answer, say so."
class State:
def __init__(self):
self.current_image = None
self.last_prediction = None
self.current_model = "owlv2" # Default model
state = State()
def get_preprocessed_image(pixel_values):
pixel_values = pixel_values.squeeze().numpy()
unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
return unnormalized_image
def encode_image_to_base64(image_array):
if image_array is None:
return None
image = Image.fromarray(image_array)
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def format_query_for_model(text_input, model_type="owlv2"):
"""Format query based on model requirements"""
# Extract objects (e.g., "count frogs and horses" -> ["frog", "horse"])
text = text_input.lower()
words = [w.strip('.,?!') for w in text.split()
if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
if model_type == "owlv2":
return [["a photo of " + obj for obj in words]]
else: # DINO
# DINO only works with single object queries with format "a object."
return f"a {words[0]}."
def detect_objects(query_text):
if state.current_image is None:
return {"count": 0, "message": "No image provided"}
image = Image.fromarray(state.current_image)
draw = ImageDraw.Draw(image)
if state.current_model == "owlv2":
inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
results = owlv2_processor.post_process_object_detection(
outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
)
else: # DINO
inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = dino_model(**inputs)
results = dino_processor.post_process_grounded_object_detection(
outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
target_sizes=[image.size[::-1]]
)
# Draw detection boxes
boxes = results[0]["boxes"]
scores = results[0]["scores"]
for box, score in zip(boxes, scores):
box = [round(i) for i in box.tolist()]
draw.rectangle(box, outline="red", width=3)
draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
state.last_prediction = np.array(image)
return {
"count": len(boxes),
"confidence": scores.tolist(),
"message": f"Detected {len(boxes)} objects"
}
def identify_plant():
if state.current_image is None:
return {"error": "No image provided"}
image = Image.fromarray(state.current_image)
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='JPEG')
img_byte_arr = img_byte_arr.getvalue()
api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
files = [('images', ('image.jpg', img_byte_arr))]
data = {'organs': ['leaf']}
try:
response = requests.post(api_endpoint, files=files, data=data)
if response.status_code == 200:
result = response.json()
best_match = result['results'][0]
return {
"scientific_name": best_match['species']['scientificName'],
"common_names": best_match['species'].get('commonNames', []),
"family": best_match['species']['family']['scientificName'],
"genus": best_match['species']['genus']['scientificName'],
"confidence": f"{best_match['score']*100:.1f}%"
}
else:
return {"error": f"API Error: {response.status_code}"}
except Exception as e:
return {"error": f"Error: {str(e)}"}
# Tool definitions
object_detection_function = {
"name": "detect_objects",
"description": "Use this function to detect and count objects in images based on text queries.",
"parameters": {
"type": "object",
"properties": {
"query_text": {
"type": "array",
"description": "List of text queries describing objects to detect",
"items": {"type": "string"}
}
}
}
}
plant_identification_function = {
"name": "identify_plant",
"description": "Use this when asked about plant species identification or botanical classification.",
"parameters": {
"type": "object",
"properties": {},
"required": []
}
}
tools = [
{"type": "function", "function": object_detection_function},
{"type": "function", "function": plant_identification_function}
]
def format_tool_response(tool_response_content):
data = json.loads(tool_response_content)
if "error" in data:
return f"Error: {data['error']}"
elif "scientific_name" in data:
return f"""π Plant Identification Results:
πΏ Scientific Name: {data['scientific_name']}
π₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
πͺ Family: {data['family']}
π― Confidence: {data['confidence']}"""
else:
return f"I detected {data['count']} objects in the image."
def chat(message, image, history):
if image is not None:
state.current_image = image
if state.current_image is None:
return "Please upload an image first.", None
base64_image = encode_image_to_base64(state.current_image)
messages = [{"role": "system", "content": system_message}]
for human, assistant in history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
# Extract objects to detect from user message
# This could be enhanced with better NLP
objects_to_detect = message.lower()
formatted_query = format_query_for_model(objects_to_detect, state.current_model)
messages.append({
"role": "user",
"content": [
{"type": "text", "text": message},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
})
response = openai.chat.completions.create(
model=MODEL,
messages=messages,
tools=tools,
max_tokens=300
)
if response.choices[0].finish_reason == "tool_calls":
message = response.choices[0].message
messages.append(message)
for tool_call in message.tool_calls:
if tool_call.function.name == "detect_objects":
results = detect_objects(formatted_query)
else:
results = identify_plant()
tool_response = {
"role": "tool",
"content": json.dumps(results),
"tool_call_id": tool_call.id
}
messages.append(tool_response)
response = openai.chat.completions.create(
model=MODEL,
messages=messages,
max_tokens=300
)
return response.choices[0].message.content, state.last_prediction
def update_model(choice):
print(f"Model switched to: {choice}")
state.current_model = choice.lower()
return f"Model switched to {choice}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Object Detection and Plant Analysis System")
with gr.Row():
with gr.Column():
model_choice = gr.Radio(
choices=["Owlv2", "DINO"],
value="Owlv2",
label="Select Detection Model",
interactive=True
)
image_input = gr.Image(type="numpy", label="Upload Image")
text_input = gr.Textbox(
label="Ask about the image",
placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
)
with gr.Row():
submit_btn = gr.Button("Analyze")
reset_btn = gr.Button("Reset")
with gr.Column():
chatbot = gr.Chatbot()
# output_image = gr.Image(label="Detected Objects")
output_image = gr.Image(type="numpy", label="Detected Objects")
def process_interaction(message, image, history):
response, pred_image = chat(message, image, history)
history.append((message, response))
return "", pred_image, history
def reset_interface():
state.current_image = None
state.last_prediction = None
return None, None, None, []
model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
submit_btn.click(
fn=process_interaction,
inputs=[text_input, image_input, chatbot],
outputs=[text_input, output_image, chatbot]
)
reset_btn.click(
fn=reset_interface,
inputs=[],
outputs=[image_input, output_image, text_input, chatbot]
)
gr.Markdown("""## Instructions
1. Select the detection model (Owlv2 or DINO)
2. Upload an image
3. Ask specific questions about objects or plants
4. Click Analyze to get results""")
demo.launch(share=True) |