File size: 21,197 Bytes
f8cecaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a1336
 
 
 
 
 
 
 
 
 
 
f8cecaf
 
 
 
70a1336
 
 
 
f8cecaf
70a1336
 
 
 
f8cecaf
 
70a1336
 
f8cecaf
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cecaf
 
 
 
 
 
70a1336
 
 
 
 
f8cecaf
 
70a1336
f8cecaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cecaf
 
 
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cecaf
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cecaf
70a1336
 
 
 
 
 
f8cecaf
70a1336
 
 
 
 
 
 
f8cecaf
70a1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cecaf
 
 
 
 
 
 
 
 
70a1336
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
#     AutoProcessor, 
#     Owlv2ForObjectDetection,
#     AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()

# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)

# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count

# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]

# Always use object detection tool when counting/detecting is mentioned."""

# system_message += "Always be accurate. If you don't know the answer, say so."


# class State:
#     def __init__(self):
#         self.current_image = None
#         self.last_prediction = None
#         self.current_model = "owlv2"  # Default model

# state = State()

# def get_preprocessed_image(pixel_values):
#     pixel_values = pixel_values.squeeze().numpy()
#     unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
#     unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
#     unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
#     return unnormalized_image

# def encode_image_to_base64(image_array):
#     if image_array is None:
#         return None
#     image = Image.fromarray(image_array)
#     buffered = BytesIO()
#     image.save(buffered, format="JPEG")
#     return base64.b64encode(buffered.getvalue()).decode('utf-8')


# def format_query_for_model(text_input, model_type="owlv2"):
#     """Format query based on model requirements"""
#     # Extract objects (e.g., "detect a lion" -> "lion")
#     text = text_input.lower()
#     words = [w.strip('.,?!') for w in text.split() 
#              if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
    
#     if model_type == "owlv2":
#         # Return just the list of queries for Owlv2, not nested list
#         queries = ["a photo of " + obj for obj in words]
#         print("Owlv2 queries:", queries)
#         return queries
#     else:  # DINO
#         # DINO query format
#         query = f"a {words[:]}."
#         print("DINO query:", query)
#         return query
       

# def detect_objects(query_text):
#     if state.current_image is None:
#         return {"count": 0, "message": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     draw = ImageDraw.Draw(image)
    
#     if state.current_model == "owlv2":
#         # For Owlv2, pass the text queries directly
#         inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = owlv2_model(**inputs)
#         results = owlv2_processor.post_process_object_detection(
#             outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
#         )
#     else:  # DINO
#         # For DINO, pass the single text query
#         inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = dino_model(**inputs)
#         results = dino_processor.post_process_grounded_object_detection(
#             outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
#             target_sizes=[image.size[::-1]]
#         )
    
#     # Draw detection boxes
#     boxes = results[0]["boxes"]
#     scores = results[0]["scores"]
    
#     for box, score in zip(boxes, scores):
#         box = [round(i) for i in box.tolist()]
#         draw.rectangle(box, outline="red", width=3)
#         draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
    
#     state.last_prediction = np.array(image)
#     return {
#         "count": len(boxes),
#         "confidence": scores.tolist(),
#         "message": f"Detected {len(boxes)} objects"
#     }

# def identify_plant():
#     if state.current_image is None:
#         return {"error": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     img_byte_arr = BytesIO()
#     image.save(img_byte_arr, format='JPEG')
#     img_byte_arr = img_byte_arr.getvalue()
    
#     api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
#     files = [('images', ('image.jpg', img_byte_arr))]
#     data = {'organs': ['leaf']}
    
#     try:
#         response = requests.post(api_endpoint, files=files, data=data)
#         if response.status_code == 200:
#             result = response.json()
#             best_match = result['results'][0]
#             return {
#                 "scientific_name": best_match['species']['scientificName'],
#                 "common_names": best_match['species'].get('commonNames', []),
#                 "family": best_match['species']['family']['scientificName'],
#                 "genus": best_match['species']['genus']['scientificName'],
#                 "confidence": f"{best_match['score']*100:.1f}%"
#             }
#         else:
#             return {"error": f"API Error: {response.status_code}"}
#     except Exception as e:
#         return {"error": f"Error: {str(e)}"}

# # Tool definitions
# object_detection_function = {
#     "name": "detect_objects",
#     "description": "Use this function to detect and count objects in images based on text queries.",
#     "parameters": {
#         "type": "object",
#         "properties": {
#             "query_text": {
#                 "type": "array",
#                 "description": "List of text queries describing objects to detect",
#                 "items": {"type": "string"}
#             }
#         }
#     }
# }

# plant_identification_function = {
#     "name": "identify_plant",
#     "description": "Use this when asked about plant species identification or botanical classification.",
#     "parameters": {
#         "type": "object",
#         "properties": {},
#         "required": []
#     }
# }

# tools = [
#     {"type": "function", "function": object_detection_function},
#     {"type": "function", "function": plant_identification_function}
# ]

# def format_tool_response(tool_response_content):
#     data = json.loads(tool_response_content)
#     if "error" in data:
#         return f"Error: {data['error']}"
#     elif "scientific_name" in data:
#         return f"""πŸ“‹ Plant Identification Results:
        
# 🌿 Scientific Name: {data['scientific_name']}
# πŸ‘₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# πŸ‘ͺ Family: {data['family']}
# 🎯 Confidence: {data['confidence']}"""
#     else:
#         return f"I detected {data['count']} objects in the image."

# def chat(message, image, history):
#     if image is not None:
#         state.current_image = image
    
#     if state.current_image is None:
#         return "Please upload an image first.", None
    
#     base64_image = encode_image_to_base64(state.current_image)
#     messages = [{"role": "system", "content": system_message}]
    
#     for human, assistant in history:
#         messages.append({"role": "user", "content": human})
#         messages.append({"role": "assistant", "content": assistant})
    
#     # Extract objects to detect from user message
#     # This could be enhanced with better NLP
#     objects_to_detect = message.lower()
#     formatted_query = format_query_for_model(objects_to_detect, state.current_model)
    
#     messages.append({
#         "role": "user",
#         "content": [
#             {"type": "text", "text": message},
#             {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
#         ]
#     })

#     response = openai.chat.completions.create(
#         model=MODEL,
#         messages=messages,
#         tools=tools,
#         max_tokens=300
#     )

#     if response.choices[0].finish_reason == "tool_calls":
#         message = response.choices[0].message
#         messages.append(message)
        
#         for tool_call in message.tool_calls:
#             if tool_call.function.name == "detect_objects":
#                 results = detect_objects(formatted_query)
#             else:
#                 results = identify_plant()
                
#             tool_response = {
#                 "role": "tool",
#                 "content": json.dumps(results),
#                 "tool_call_id": tool_call.id
#             }
#             messages.append(tool_response)

#         response = openai.chat.completions.create(
#             model=MODEL,
#             messages=messages,
#             max_tokens=300
#         )

#     return response.choices[0].message.content, state.last_prediction

# def update_model(choice):
#     print(f"Model switched to: {choice}")
#     state.current_model = choice.lower()
#     return f"Model switched to {choice}"

# # Create Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Object Detection and Plant Analysis System")
    
#     with gr.Row():
#         with gr.Column():
#             model_choice = gr.Radio(
#                 choices=["Owlv2", "DINO"],
#                 value="Owlv2",
#                 label="Select Detection Model",
#                 interactive=True
#             )
#             image_input = gr.Image(type="numpy", label="Upload Image")
#             text_input = gr.Textbox(
#                 label="Ask about the image",
#                 placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
#             )
#             with gr.Row():
#                 submit_btn = gr.Button("Analyze")
#                 reset_btn = gr.Button("Reset")
        
#         with gr.Column():
#             chatbot = gr.Chatbot()
#             # output_image = gr.Image(label="Detected Objects")
#             output_image = gr.Image(type="numpy", label="Detected Objects")
    
#     def process_interaction(message, image, history):
#         response, pred_image = chat(message, image, history)
#         history.append((message, response))
#         return "", pred_image, history
    
#     def reset_interface():
#         state.current_image = None
#         state.last_prediction = None
#         return None, None, None, []
    
#     model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
    
#     submit_btn.click(
#         fn=process_interaction,
#         inputs=[text_input, image_input, chatbot],
#         outputs=[text_input, output_image, chatbot]
#     )
    
#     reset_btn.click(
#         fn=reset_interface,
#         inputs=[],
#         outputs=[image_input, output_image, text_input, chatbot]
#     )

#     gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")

# demo.launch(share=True)

# imports
import os
import json
import base64
from io import BytesIO
from dotenv import load_dotenv
from openai import OpenAI
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import requests
import matplotlib.pyplot as plt
from vision_agent.agent import VisionAgentCoderV2
from vision_agent.models import AgentMessage
import vision_agent.tools as T

# Initialization
load_dotenv()
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-anthropic-key-here')
PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
MODEL = "gpt-4o"
openai = OpenAI()

# Initialize VisionAgent
agent = VisionAgentCoderV2(verbose=False)

system_message = """You are an expert in object detection. When users mention:
1. "count [object(s)]" - Use detect_objects to count them
2. "detect [object(s)]" - Same as count
3. "show [object(s)]" - Same as count

Always use object detection tool when counting/detecting is mentioned."""

system_message += "Always be accurate. If you don't know the answer, say so."


class State:
    def __init__(self):
        self.current_image = None
        self.last_prediction = None

state = State()

def encode_image_to_base64(image_array):
    if image_array is None:
        return None
    image = Image.fromarray(image_array)
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode('utf-8')

def save_temp_image(image_array):
    """Save the image to a temporary file for VisionAgent to process"""
    temp_path = "temp_image.jpg"
    image = Image.fromarray(image_array)
    image.save(temp_path)
    return temp_path

def detect_objects(query_text):
    if state.current_image is None:
        return {"count": 0, "message": "No image provided"}
    
    # Save the current image to a temporary file
    image_path = save_temp_image(state.current_image)
    
    try:
        # Use VisionAgent to detect objects
        image = T.load_image(image_path)
        
        # Clean query text to get the object name
        object_name = query_text[0].replace("a photo of ", "").strip()
        
        # Detect objects using CountGD
        detections = T.countgd_object_detection(object_name, image)
        
        # Visualize results
        result_image = T.overlay_bounding_boxes(image, detections)
        
        # Convert result back to numpy array for display
        state.last_prediction = np.array(result_image)
        
        return {
            "count": len(detections),
            "confidence": [det["score"] for det in detections],
            "message": f"Detected {len(detections)} {object_name}(s)"
        }
    except Exception as e:
        print(f"Error in detect_objects: {str(e)}")
        return {"count": 0, "message": f"Error: {str(e)}"}

def identify_plant():
    if state.current_image is None:
        return {"error": "No image provided"}
    
    image = Image.fromarray(state.current_image)
    img_byte_arr = BytesIO()
    image.save(img_byte_arr, format='JPEG')
    img_byte_arr = img_byte_arr.getvalue()
    
    api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
    files = [('images', ('image.jpg', img_byte_arr))]
    data = {'organs': ['leaf']}
    
    try:
        response = requests.post(api_endpoint, files=files, data=data)
        if response.status_code == 200:
            result = response.json()
            best_match = result['results'][0]
            return {
                "scientific_name": best_match['species']['scientificName'],
                "common_names": best_match['species'].get('commonNames', []),
                "family": best_match['species']['family']['scientificName'],
                "genus": best_match['species']['genus']['scientificName'],
                "confidence": f"{best_match['score']*100:.1f}%"
            }
        else:
            return {"error": f"API Error: {response.status_code}"}
    except Exception as e:
        return {"error": f"Error: {str(e)}"}

# Tool definitions
object_detection_function = {
    "name": "detect_objects",
    "description": "Use this function to detect and count objects in images based on text queries.",
    "parameters": {
        "type": "object",
        "properties": {
            "query_text": {
                "type": "array",
                "description": "List of text queries describing objects to detect",
                "items": {"type": "string"}
            }
        }
    }
}

plant_identification_function = {
    "name": "identify_plant",
    "description": "Use this when asked about plant species identification or botanical classification.",
    "parameters": {
        "type": "object",
        "properties": {},
        "required": []
    }
}

tools = [
    {"type": "function", "function": object_detection_function},
    {"type": "function", "function": plant_identification_function}
]

def format_tool_response(tool_response_content):
    data = json.loads(tool_response_content)
    if "error" in data:
        return f"Error: {data['error']}"
    elif "scientific_name" in data:
        return f"""πŸ“‹ Plant Identification Results:
        
🌿 Scientific Name: {data['scientific_name']}
πŸ‘₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
πŸ‘ͺ Family: {data['family']}
🎯 Confidence: {data['confidence']}"""
    else:
        return f"I detected {data['count']} objects in the image."

def chat(message, image, history):
    if image is not None:
        state.current_image = image
    
    if state.current_image is None:
        return "Please upload an image first.", None
    
    base64_image = encode_image_to_base64(state.current_image)
    messages = [{"role": "system", "content": system_message}]
    
    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    
    # Extract objects to detect from user message
    objects_to_detect = message.lower()
    
    # Format query for object detection
    query = ["a photo of " + objects_to_detect.replace("count", "").replace("detect", "").replace("show", "").strip()]
    
    messages.append({
        "role": "user",
        "content": [
            {"type": "text", "text": message},
            {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
        ]
    })

    response = openai.chat.completions.create(
        model=MODEL,
        messages=messages,
        tools=tools,
        max_tokens=300
    )

    if response.choices[0].finish_reason == "tool_calls":
        message = response.choices[0].message
        messages.append(message)
        
        for tool_call in message.tool_calls:
            if tool_call.function.name == "detect_objects":
                results = detect_objects(query)
            else:
                results = identify_plant()
                
            tool_response = {
                "role": "tool",
                "content": json.dumps(results),
                "tool_call_id": tool_call.id
            }
            messages.append(tool_response)

        response = openai.chat.completions.create(
            model=MODEL,
            messages=messages,
            max_tokens=300
        )

    return response.choices[0].message.content, state.last_prediction

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Object Detection and Plant Analysis System using VisionAgent")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="numpy", label="Upload Image")
            text_input = gr.Textbox(
                label="Ask about the image",
                placeholder="e.g., 'Count dogs in this image' or 'What species is this plant?'"
            )
            with gr.Row():
                submit_btn = gr.Button("Analyze")
                reset_btn = gr.Button("Reset")
        
        with gr.Column():
            chatbot = gr.Chatbot()
            output_image = gr.Image(type="numpy", label="Detection Results")
    
    def process_interaction(message, image, history):
        response, pred_image = chat(message, image, history)
        history.append((message, response))
        return "", pred_image, history
    
    def reset_interface():
        state.current_image = None
        state.last_prediction = None
        return None, None, None, []
    
    submit_btn.click(
        fn=process_interaction,
        inputs=[text_input, image_input, chatbot],
        outputs=[text_input, output_image, chatbot]
    )
    
    reset_btn.click(
        fn=reset_interface,
        inputs=[],
        outputs=[image_input, output_image, text_input, chatbot]
    )

    gr.Markdown("""## Instructions
1. Upload an image
2. Ask specific questions about objects or plants
3. Click Analyze to get results

Examples:
- "Count the number of people in this image"
- "Detect cats and dogs"
- "What species is this plant?"
""")

demo.launch(share=True)