Spaces:
Sleeping
Sleeping
File size: 27,763 Bytes
9bb001a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import os
import imageio
import numpy as np
import torch
import random
import spaces
import gradio as gr
import torchvision
import torchvision.transforms as T
from einops import rearrange
from huggingface_hub import hf_hub_download
from torchvision.models.optical_flow import raft_large, Raft_Large_Weights
from torchvision.utils import flow_to_image
from diffusers import AutoencoderKL, MotionAdapter, UNet2DConditionModel
from diffusers import DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from onlyflow.models.flow_adaptor import FlowEncoder, FlowAdaptor
from onlyflow.models.unet import UNetMotionModel
from onlyflow.pipelines.pipeline_animation_long import FlowCtrlPipeline
from tools.optical_flow import get_optical_flow
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples")
os.makedirs(self.savedir, exist_ok=True)
ckpt_path = hf_hub_download('obvious-research/onlyflow', 'weights_fp16.ckpt')
ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True)
self.flow_encoder_state_dict = ckpt['flow_encoder_state_dict']
self.attention_processor_state_dict = ckpt['attention_processor_state_dict']
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.motion_adapter = None
def update_base_model(self, base_model_id, progress=gr.Progress()):
progress(0, desc="Starting...")
self.tokenizer = CLIPTokenizer.from_pretrained(base_model_id, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(base_model_id, subfolder="text_encoder")
self.vae = AutoencoderKL.from_pretrained(base_model_id, subfolder="vae")
self.unet = UNet2DConditionModel.from_pretrained(base_model_id, subfolder="unet")
return base_model_id
def update_motion_module(self, motion_module_id, progress=gr.Progress()):
self.motion_adapter = MotionAdapter.from_pretrained(motion_module_id)
def animate(
self,
id_base_model,
id_motion_module,
prompt_textbox_positive,
prompt_textbox_negative,
seed_textbox,
input_video,
height,
width,
flow_scale,
cfg,
diffusion_steps,
temporal_ds,
ctx_stride
):
#if any([x is None for x in [self.tokenizer, self.text_encoder, self.vae, self.unet, self.motion_adapter]]) or isinstance(self.unet, str):
self.update_base_model(id_base_model)
self.update_motion_module(id_motion_module)
self.unet = UNetMotionModel.from_unet2d(
self.unet,
motion_adapter=self.motion_adapter
)
self.raft = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).eval()
self.flow_encoder = FlowEncoder(
downscale_factor=8,
channels=[320, 640, 1280, 1280],
nums_rb=2,
ksize=1,
sk=True,
use_conv=False,
compression_factor=1,
temporal_attention_nhead=8,
positional_embeddings="sinusoidal",
num_positional_embeddings=16,
checkpointing=False
).eval()
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.unet.requires_grad_(False)
self.raft.requires_grad_(False)
self.flow_encoder.requires_grad_(False)
self.unet.set_all_attn(
flow_channels=[320, 640, 1280, 1280],
add_spatial=False,
add_temporal=True,
encoder_only=False,
query_condition=True,
key_value_condition=True,
flow_scale=1.0,
)
self.flow_adaptor = FlowAdaptor(self.unet, self.flow_encoder).eval()
# load the flow encoder weights
pose_enc_m, pose_enc_u = self.flow_adaptor.flow_encoder.load_state_dict(
self.flow_encoder_state_dict,
strict=False
)
assert len(pose_enc_m) == 0 and len(pose_enc_u) == 0
# load the attention processor weights
_, attention_processor_u = self.flow_adaptor.unet.load_state_dict(
self.attention_processor_state_dict,
strict=False
)
assert len(attention_processor_u) == 0
pipeline = FlowCtrlPipeline(
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet,
motion_adapter=self.motion_adapter,
flow_encoder=self.flow_encoder,
scheduler=DDIMScheduler.from_pretrained(id_base_model, subfolder="scheduler"),
)
if int(seed_textbox) > 0:
seed = int(seed_textbox)
else:
seed = random.randint(1, int(1e16))
return animate_diffusion(seed, pipeline, self.raft, input_video, prompt_textbox_positive, prompt_textbox_negative, width, height, flow_scale, cfg, diffusion_steps, temporal_ds, ctx_stride)
@spaces.GPU(duration=150)
def animate_diffusion(seed, pipeline, raft_model, base_video, prompt_textbox, negative_prompt_textbox, width_slider, height_slider, flow_scale, cfg, diffusion_steps, temporal_ds, context_stride):
savedir = './samples'
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
generator = torch.Generator(device="cpu")
generator.manual_seed(seed)
raft_model = raft_model.to(device)
pipeline = pipeline.to(device)
pixel_values = torchvision.io.read_video(base_video, output_format="TCHW", pts_unit='sec')[0][::temporal_ds]
print("Video loaded, shape:", pixel_values.shape)
if width_slider/height_slider > pixel_values.shape[3]/pixel_values.shape[2]:
print("Resizing video to fit width cause input video is not wide enough")
temp_height = int(width_slider * pixel_values.shape[2]/pixel_values.shape[3])
temp_width = width_slider
else:
print("Resizing video to fit height cause input video is not tall enough")
temp_height = height_slider
temp_width = int(height_slider * pixel_values.shape[3]/pixel_values.shape[2])
print("Resizing video to:", temp_height, temp_width)
pixel_values = T.Resize((temp_height, temp_width))(pixel_values)
pixel_values = T.CenterCrop((height_slider, width_slider))(pixel_values)
pixel_values = T.ConvertImageDtype(torch.float32)(pixel_values)[None, ...].contiguous().to(device)
save_sample_path_input = os.path.join(savedir, f"input.mp4")
pixel_values_save = pixel_values[0] * 255
pixel_values_save = pixel_values_save.cpu()
pixel_values_save = torch.permute(pixel_values_save, (0, 2, 3, 1))
torchvision.io.write_video(save_sample_path_input, pixel_values_save, fps=8)
del pixel_values_save
print("Video loaded, shape:", pixel_values.shape)
flow = get_optical_flow(
raft_model,
(pixel_values * 2) - 1,
pixel_values.shape[1] - 1,
encode_chunk_size=16,
).to('cpu')
sample_flow = (flow_to_image(rearrange(flow[0], "c f h w -> f c h w"))) # N, 3, H, W
save_sample_path_flow = os.path.join(savedir, f"flow.mp4")
sample_flow = (sample_flow).cpu().to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(save_sample_path_flow, sample_flow, fps=8)
del sample_flow
original_flow_shape = flow.shape
print("Optical flow computed, shape:", flow.shape)
if flow.shape[2] < 16:
print("Video is too short, padding to 16 frames")
video_length = 16
n = 16 - flow.shape[2]
# create a tensor containing the last frame optical flow repeated n times
to_add = flow[:, :, -1].unsqueeze(2).expand(-1, -1, n, -1, -1)
flow = torch.cat([flow, to_add], dim=2).to(device)
elif flow.shape[2] > 16:
print("Video is too long, enabling windowing")
print("Enabling model CPU offload")
pipeline.enable_model_cpu_offload()
print("Enabling VAE slicing")
pipeline.enable_vae_slicing()
print("Enabling VAE tiling")
pipeline.enable_vae_tiling()
print("Enabling free noise")
pipeline.enable_free_noise(
context_length=16,
context_stride=context_stride,
)
import math
def find_divisors(n: int):
"""
Return sorted list of all positive divisors of n.
Uses a sqrt(n) approach for efficiency.
"""
divs = set()
limit = int(math.isqrt(n))
for i in range(1, limit + 1):
if n % i == 0:
divs.add(i)
divs.add(n // i)
return sorted(divs)
def multiples_in_range(k: int, min_val: int, max_val: int):
"""
Return all multiples of k within [min_val, max_val].
"""
if k == 0:
return []
# First multiple of k >= min_val
start = ((min_val + k - 1) // k) * k
# Last multiple of k <= max_val
end = (max_val // k) * k
return list(range(start, end + 1, k)) if start <= end else []
def adjust_video_length(original_length: int,
context_stride: int,
chunk_size: int,
temporal_split_size: int) -> int:
"""
Find the minimal video_length >= original_length satisfying:
1) (video_length - 16) is divisible by context_stride.
2) EITHER (2*video_length) is divisible by temporal_split_size
OR (2*video_length) is divisible by chunk_size
(when 2*video_length is not multiple of temporal_split_size).
"""
# We start at least at 16 (though in practice original_length likely > 16)
candidate = max(original_length, 16)
# We want (candidate - 16) % context_stride == 0
# so let n be the multiple to step.
# n is how many times we add `context_stride` beyond 16.
# This ensures (candidate - 16) is a multiple of context_stride.
# Then we check the second condition, else keep stepping.
# If candidate < 16, bump it to 16
if candidate < 16:
candidate = 16
# Make sure we jump to the correct "starting multiple" of context_stride
offset = (candidate - 16) % context_stride
if offset != 0:
candidate += (context_stride - offset) # jump to the next multiple
while True:
# Condition: (candidate - 16) is multiple of context_stride (already enforced by stepping)
# Check second part:
# - if (2*candidate) % temporal_split_size == 0, we are good
# - else we require (2*candidate) % chunk_size == 0
twoL = 2 * candidate
if (twoL % temporal_split_size == 0) or (twoL % chunk_size == 0):
return candidate
# Go to next valid candidate
candidate += context_stride
def find_valid_configs(original_video_length: int,
width: int,
height: int,
context_stride: int):
"""
Generate all valid tuples (chunk_size, spatial_split_size, temporal_split_size, video_length)
subject to the constraints:
1) chunk_size divides temporal_split_size
2) chunk_size divides spatial_split_size
3) chunk_size divides (2 * (width//64) * (height//64))
4) if (2*video_length) % temporal_split_size != 0, then chunk_size divides (2*video_length)
5) context_stride divides (video_length - 16)
6) 128 <= spatial_split_size <= 512
7) 1 <= temporal_split_size <= 32
8) 1 <= chunk_size <= 16
We allow increasing original_video_length minimally if needed to satisfy constraints #4 and #5.
"""
factor = 2 * (width // 64) * (height // 64)
# 1) find all possible chunk_size as divisors of factor, in [1..16]
possible_chunks = [d for d in find_divisors(factor) if 1 <= d <= 32]
# For storing results
valid_tuples = []
for chunk_size in possible_chunks:
# 2) generate all spatial_split_size in [128..512] that are multiples of chunk_size
spatial_splits = multiples_in_range(chunk_size, 480, 512)
# 3) generate all temporal_split_size in [1..32] that are multiples of chunk_size
temporal_splits = multiples_in_range(chunk_size, 1, 32)
for ssp in spatial_splits:
for tsp in temporal_splits:
# 4) & 5) Adjust video_length minimally to satisfy constraints
final_length = adjust_video_length(original_video_length,
context_stride,
chunk_size,
tsp)
# Now we have a valid (chunk_size, ssp, tsp, final_length)
valid_tuples.append((chunk_size, ssp, tsp, final_length))
return valid_tuples
def find_pareto_optimal(configs):
"""
Given a list of tuples (chunk_size, spatial_split_size, temporal_split_size, video_length),
return the Pareto-optimal subset under the criteria:
- chunk_size: larger is better
- spatial_split_size: larger is better
- temporal_split_size: larger is better
- video_length: smaller is better
"""
def dominates(A, B):
cA, sA, tA, lA = A
cB, sB, tB, lB = B
# A dominates B if:
# cA >= cB, sA >= sB, tA >= tB, and lA <= lB
# AND at least one of these is a strict inequality.
better_or_equal = (cA >= cB) and (tA >= tB) and (lA <= lB)
strictly_better = (cA > cB) or (tA > tB) or (lA < lB)
return better_or_equal and strictly_better
pareto = []
for i, cfg_i in enumerate(configs):
# Check if cfg_i is dominated by any cfg_j
is_dominated = False
for j, cfg_j in enumerate(configs):
if i == j:
continue
if dominates(cfg_j, cfg_i):
is_dominated = True
break
if not is_dominated:
pareto.append(cfg_i)
return pareto
print("Finding valid configurations...")
valid_configs = find_valid_configs(
original_video_length=flow.shape[2],
width=width_slider,
height=height_slider,
context_stride=context_stride
)
print("Found", len(valid_configs), "valid configurations")
print("Finding Pareto-optimal configurations...")
pareto_optimal = find_pareto_optimal(valid_configs)
print("Found", pareto_optimal)
criteria = lambda cs, sss, tss, vl: cs + tss - 3 * int(abs(flow.shape[2] - vl) / 10)
pareto_optimal.sort(key=lambda x: criteria(*x), reverse=True)
print("Found sorted", pareto_optimal)
solution = pareto_optimal[0]
chunk_size, spatial_split_size, temporal_split_size, video_length = solution
n = video_length - original_flow_shape[2]
to_add = flow[:, :, -1].unsqueeze(2).expand(-1, -1, n, -1, -1)
flow = torch.cat([flow, to_add], dim=2)
pipeline.enable_free_noise_split_inference(
temporal_split_size=temporal_split_size,
spatial_split_size=spatial_split_size
)
pipeline.unet.enable_forward_chunking(chunk_size)
print("Chunking enabled with chunk size:", chunk_size)
print("Temporal split size:", temporal_split_size)
print("Spatial split size:", spatial_split_size)
print("Context stride:", context_stride)
print("Temporal downscale:", temporal_ds)
print("Video length:", video_length)
print("Flow shape:", flow.shape)
else:
print("Video is just right, no padding or windowing needed")
flow = flow.to(device)
video_length = flow.shape[2]
sample_vid = pipeline(
prompt_textbox,
negative_prompt=negative_prompt_textbox,
optical_flow=flow,
num_inference_steps=diffusion_steps,
guidance_scale=cfg,
width=width_slider,
height=height_slider,
num_frames=video_length,
val_scale_factor_temporal=flow_scale,
generator=generator,
).frames[0]
del flow
if device == "cuda":
torch.cuda.synchronize()
torch.cuda.empty_cache()
save_sample_path_video = os.path.join(savedir, f"sample.mp4")
sample_vid = sample_vid[:original_flow_shape[2]] * 255.
sample_vid = sample_vid.cpu().numpy()
sample_vid = np.transpose(sample_vid, axes=(0, 2, 3, 1))
torchvision.io.write_video(save_sample_path_video, sample_vid, fps=8)
return gr.Video(value=save_sample_path_flow), gr.Video(value=save_sample_path_video)
controller = AnimateController()
def find_closest_ratio(target_ratio):
width_list = list(reversed(range(256, 1025, 64)))
height_list = list(reversed(range(256, 1025, 64)))
ratio_list = [(h, w, w/h) for h in height_list for w in width_list]
ratio_list.sort(key=lambda x: abs(x[2] - target_ratio))
ratio_list = list(filter(lambda x: x[2] == ratio_list[0][2], ratio_list))
ratio_list.sort(key=lambda x: abs(x[0]*x[1] - 512*512))
return ratio_list[0][:2]
def find_dimension(video):
import av
container = av.open(open(video, 'rb'))
height, width = container.streams.video[0].height, container.streams.video[0].width
target_ratio = width / height
return find_closest_ratio(target_ratio)
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# <p style="text-align:center;">OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models</p>
Mathis Koroglu, Hugo Caselles-Dupré, Guillaume Jeanneret Sanmiguel, Matthieu Cord<br>
[Arxiv Report](https://arxiv.org/abs/2411.10501) | [Project Page](https://obvious-research.github.io/onlyflow/) | [Github](https://github.com/obvious-research/onlyflow/)
"""
)
gr.Markdown(
"""
### Quick Start:
1. Select desired `Base Model`.
2. Select `Motion Module`. We recommend trying guoyww/animatediff-motion-adapter-v1-5-3 for the best results.
3. Provide `Positive Prompt` and `Negative Prompt`. You are encouraged to refer to each model's webpage on HuggingFace Hub or CivitAI to learn how to write prompts for them.
4. Upload a video to extract optical flow from.
5. Select a 'Flow Scale' to modulate the input video optical flow conditioning.
6. Select a 'CFG' and 'Diffusion Steps' to control the quality of the generated video and prompt adherence.
7. Select a 'Temporal Downsample' to reduce the number of frames in the input video.
8. If you want to use a custom dimension, check the `Custom Dimension` box and adjust the `Width` and `Height` sliders.
9. If the video is too long, you can adjust the generation window offset with the `Context Stride` slider.
10. Click `Generate`, wait for ~1/3 min, and enjoy the result!
If you have any error concerning GPU limits, please try again later when your ZeroGPU quota is reset, or try with a shorter video.
Otherwise, you can also duplicate this space and select a custom GPU plan.
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("# INPUTS")
with gr.Row(equal_height=True, show_progress=True):
base_model = gr.Dropdown(
label="Select or type a base model id",
choices=[
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"digiplay/Photon_v1",
],
interactive=True,
scale=4,
allow_custom_value=True,
show_label=True
)
base_model_btn = gr.Button(value="Update", scale=1, size='lg')
with gr.Row(equal_height=True, show_progress=True):
motion_module = gr.Dropdown(
label="Select or type a motion module id",
choices=[
"guoyww/animatediff-motion-adapter-v1-5-3",
"guoyww/animatediff-motion-adapter-v1-5-2"
],
interactive=True,
scale=4
)
motion_module_btn = gr.Button(value="Update", scale=1, size='lg')
base_model_btn.click(fn=controller.update_base_model, inputs=[base_model])
motion_module_btn.click(fn=controller.update_motion_module, inputs=[motion_module])
prompt_textbox_positive = gr.Textbox(label="Positive Prompt", lines=3)
prompt_textbox_negative = gr.Textbox(label="Negative Prompt", lines=2, value="worst quality, low quality, nsfw, logo")
flow_scale = gr.Slider(label="Flow Scale", value=1.0, minimum=0, maximum=2, step=0.025)
diffusion_steps = gr.Slider(label="Diffusion Steps", value=25, minimum=0, maximum=100, step=1)
cfg = gr.Slider(label="CFG", value=7.5, minimum=0, maximum=30, step=0.1)
temporal_ds = gr.Slider(label="Temporal Downsample", value=1, minimum=1, maximum=30, step=1)
input_video = gr.Video(label="Input Video", interactive=True)
ctx_stride = gr.State(12)
with gr.Accordion("Advanced", open=False):
use_custom_dim = gr.Checkbox(label="Custom Dimension", value=False)
with gr.Row(equal_height=True):
height, width = gr.State(512), gr.State(512)
@gr.render(inputs=[use_custom_dim, input_video])
def render_custom_dim(use_custom_dim, input_video):
if input_video is not None:
loc_height, loc_width = find_dimension(input_video)
else:
loc_height, loc_width = 512, 512
slider_width = gr.Slider(label="Width", value=loc_width, minimum=256, maximum=1024,
step=64, visible=use_custom_dim)
slider_height = gr.Slider(label="Height", value=loc_height, minimum=256, maximum=1024,
step=64, visible=use_custom_dim)
slider_width.change(lambda x: x, inputs=[slider_width], outputs=[width])
slider_height.change(lambda x: x, inputs=[slider_height], outputs=[height])
with gr.Row():
@gr.render(inputs=input_video)
def render_ctx_stride(input_video):
if input_video is not None:
video = open(input_video, 'rb')
import av
container = av.open(video)
num_frames = container.streams.video[0].frames
if num_frames > 17:
stride_slider = gr.Slider(label="Context Stride", value=12, minimum=1, maximum=16, step=1)
stride_slider.input(lambda x: x, inputs=[stride_slider], outputs=[ctx_stride])
if num_frames > 32:
gr.Warning(f"Video is long ({num_frames} frames), consider using a shorter video, increasing the context stride, or selecting a custom GPU plan.")
elif num_frames > 64:
raise gr.Error(f"Video is too long ({num_frames} frames), please use a shorter video, increase the context stride, or select a custom GPU plan. The current parameters won't allow generation on ZeroGPU.")
with gr.Row(equal_height=True):
seed_textbox = gr.Textbox(label="Seed", value='-1')
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(
fn=lambda: random.randint(1, int(1e16)),
inputs=[],
outputs=[seed_textbox]
)
with gr.Row():
clear_btn = gr.ClearButton(value="Clear & Reset", size='lg', variant='secondary', scale=1)
generate_button = gr.Button(value="Generate", variant='primary', scale=2, size='lg')
clear_btn.add([base_model, motion_module, input_video, prompt_textbox_positive, prompt_textbox_negative, seed_textbox, use_custom_dim, ctx_stride])
with gr.Column():
gr.Markdown("# OUTPUTS")
result_optical_flow = gr.Video(label="Optical Flow", interactive=False)
result_video = gr.Video(label="Generated Animation", interactive=False)
inputs = [base_model, motion_module, prompt_textbox_positive, prompt_textbox_negative, seed_textbox, input_video, height, width, flow_scale, cfg, diffusion_steps, temporal_ds, ctx_stride]
outputs = [result_optical_flow, result_video]
generate_button.click(fn=controller.animate, inputs=inputs, outputs=outputs)
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch() |