File size: 24,798 Bytes
9bb001a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py


# TODO: rebase on diffusers/pipelines/animatediff/pipeline_animatediff.py

import copy
from dataclasses import dataclass
from typing import Callable, Optional, Dict, Any
from typing import List, Union

import PIL.Image
import numpy as np
import torch
from diffusers import AnimateDiffPipeline
from diffusers.image_processor import PipelineImageInput
from diffusers.models import AutoencoderKL
from diffusers.pipelines.animatediff import AnimateDiffPipelineOutput
from diffusers.pipelines.animatediff.pipeline_animatediff import EXAMPLE_DOC_STRING
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from diffusers.utils import BaseOutput
from diffusers.utils import deprecate, logging, replace_example_docstring
from einops import rearrange
from transformers import CLIPTextModel, CLIPTokenizer

from onlyflow.models.flow_adaptor import FlowEncoder
from onlyflow.models.unet import UNetMotionModel

logger = logging.get_logger(__name__)


@dataclass
class AnimateDiffPipelineOutput(BaseOutput):
    frames_no_flow: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]
    frames_flow: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]


class FlowCtrlPipeline(AnimateDiffPipeline, DiffusionPipeline):
    _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]

    def __init__(self,
                 vae: AutoencoderKL,
                 text_encoder: CLIPTextModel,
                 tokenizer: CLIPTokenizer,
                 unet: UNetMotionModel,
                 scheduler: Union[
                     DDIMScheduler,
                     PNDMScheduler,
                     LMSDiscreteScheduler,
                     EulerDiscreteScheduler,
                     EulerAncestralDiscreteScheduler,
                     DPMSolverMultistepScheduler],
                 flow_encoder: FlowEncoder,
                 feature_extractor=None,
                 image_encoder=None,
                 motion_adapter=None,
                 ):

        super().__init__(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )

        # deepcopy the scheduler
        self.scheduler_no_flow = copy.deepcopy(scheduler)

        self.unet = unet

        self.register_modules(
            flow_encoder=flow_encoder
        )

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
            self,
            prompt: Union[str, List[str]] = None,
            flow_embedding: torch.FloatTensor = None,

            num_frames: Optional[int] = 16,
            height: Optional[int] = None,
            width: Optional[int] = None,

            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.Tensor] = None,

            prompt_embeds: Optional[torch.Tensor] = None,
            negative_prompt_embeds: Optional[torch.Tensor] = None,
            ip_adapter_image: Optional[PipelineImageInput] = None,
            ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,

            output_type: Optional[str] = "pt",
            return_dict: bool = True,

            callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
            callback_on_step_end_tensor_inputs: List[str] = ["latents"],

            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            motion_cross_attention_kwargs: Optional[Dict[str, Any]] = None,

            clip_skip: Optional[int] = None,
            decode_chunk_size: int = 16,

            val_scale_factor_spatial: float = 1.,
            val_scale_factor_temporal: float = 1.,

            generate_no_flow: bool = False,

            **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            decode_chunk_size (`int`, defaults to `16`):
                The number of frames to decode at a time when calling `decode_latents` method.

        Examples:

        Returns:
            [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self.unet.device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_videos_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_videos_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare timesteps
        single_model_length = num_frames
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        if generate_no_flow:
            latents_no_flow = latents.clone()

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        if isinstance(flow_embedding, list):
            assert all([x.ndim == 5 for x in flow_embedding])
            bs = flow_embedding[0].shape[0]
            flow_embedding_features = []
            for pe in flow_embedding:
                flow_embedding_feature = self.flow_encoder(pe)
                flow_embedding_feature = [rearrange(x, '(b f) c h w -> b c f h w', b=bs) for x in
                                          flow_embedding_feature]
                flow_embedding_features.append(flow_embedding_feature)
        else:
            bs = flow_embedding.shape[0]
            assert flow_embedding.ndim == 5
            flow_embedding_features = self.flow_encoder(flow_embedding)  # bf, c, h, w
            flow_embedding_features = [rearrange(x, '(b f) c h w -> b c f h w', b=bs)
                                       for x in flow_embedding_features]

        # 7. Add image embeds for IP-Adapter
        added_cond_kwargs = {
            "image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None

        num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
        for free_init_iter in range(num_free_init_iters):
            if self.free_init_enabled:
                latents, timesteps = self._apply_free_init(
                    latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
                )
                if generate_no_flow:
                    latents_no_flow = latents.clone()

            self._num_timesteps = len(timesteps)
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            if isinstance(flow_embedding_features[0], list):
                flow_embedding_features = [[torch.cat([x, x], dim=0) for x in flow_embedding_feature]
                                           for flow_embedding_feature in flow_embedding_features] \
                    if self.do_classifier_free_guidance else flow_embedding_features
            else:
                flow_embedding_features = [torch.cat([x, x], dim=0) for x in flow_embedding_features] \
                    if self.do_classifier_free_guidance else flow_embedding_features  # [2b c f h w]

            # 8. Denoising loop
            with self.progress_bar(total=self._num_timesteps) as progress_bar:
                for i, t in enumerate(timesteps):

                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    if added_cond_kwargs is not None:
                        added_cond_kwargs.update({"flow_embedding_features": flow_embedding_features})
                    else:
                        added_cond_kwargs = {"flow_embedding_features": flow_embedding_features}

                    if cross_attention_kwargs is not None:
                        cross_attention_kwargs.update({"flow_scale": val_scale_factor_spatial})
                    else:
                        cross_attention_kwargs = {"flow_scale": val_scale_factor_spatial}

                    if motion_cross_attention_kwargs is not None:
                        motion_cross_attention_kwargs.update({"flow_scale": val_scale_factor_temporal})
                    else:
                        motion_cross_attention_kwargs = {"flow_scale": val_scale_factor_temporal}

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        motion_cross_attention_kwargs=motion_cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                    ).sample

                    del latent_model_input

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                        del noise_pred_uncond, noise_pred_text

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
                    del noise_pred

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

            # 8. Denoising loop
            if generate_no_flow:
                with self.progress_bar(total=self._num_timesteps) as progress_bar:
                    for i, t in enumerate(timesteps):

                        # expand the latents if we are doing classifier free guidance
                        latent_model_input_no_flow = torch.cat(
                            [latents_no_flow] * 2) if self.do_classifier_free_guidance else latents_no_flow
                        latent_model_input_no_flow = self.scheduler.scale_model_input(latent_model_input_no_flow, t)

                        if added_cond_kwargs is not None:
                            added_cond_kwargs.update({"flow_embedding_features": flow_embedding_features})
                        else:
                            added_cond_kwargs = {"flow_embedding_features": flow_embedding_features}

                        if cross_attention_kwargs is not None:
                            cross_attention_kwargs.update({"flow_scale": 0.})
                        else:
                            cross_attention_kwargs = {"flow_scale": 0.}

                        if motion_cross_attention_kwargs is not None:
                            motion_cross_attention_kwargs.update({"flow_scale": 0.})
                        else:
                            motion_cross_attention_kwargs = {"flow_scale": 0.}

                        noise_pred_no_flow = self.unet(
                            latent_model_input_no_flow,
                            t,
                            encoder_hidden_states=prompt_embeds,
                            cross_attention_kwargs=cross_attention_kwargs,
                            motion_cross_attention_kwargs=motion_cross_attention_kwargs,
                            added_cond_kwargs=added_cond_kwargs,
                        ).sample

                        del latent_model_input_no_flow

                        # perform guidance
                        if self.do_classifier_free_guidance:
                            noise_pred_no_flow_uncond, noise_pred_no_flow_text = noise_pred_no_flow.chunk(2)
                            noise_pred_no_flow = noise_pred_no_flow_uncond + guidance_scale * (
                                    noise_pred_no_flow_text - noise_pred_no_flow_uncond)
                            del noise_pred_no_flow_uncond, noise_pred_no_flow_text

                        # compute the previous noisy sample x_t -> x_t-1
                        latents_no_flow = self.scheduler.step(noise_pred_no_flow, t, latents_no_flow,
                                                              **extra_step_kwargs).prev_sample
                        del noise_pred_no_flow

                        if callback_on_step_end is not None:
                            callback_kwargs = {}
                            for k in callback_on_step_end_tensor_inputs:
                                callback_kwargs[k] = locals()[k]
                            callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                            latents = callback_outputs.pop("latents", latents)
                            prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                            negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds",
                                                                          negative_prompt_embeds)

                        # call the callback, if provided
                        if i == len(timesteps) - 1 or (
                                (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                            progress_bar.update()
                            if callback is not None and i % callback_steps == 0:
                                callback(i, t, latents)

        # 9. Post processing
        if output_type == "latent":
            video = latents
            if generate_no_flow:
                video_no_flow = latents_no_flow
        else:
            video_tensor = self.decode_latents(latents, decode_chunk_size)
            video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

            if generate_no_flow:
                video_tensor_no_flow = self.decode_latents(latents_no_flow, decode_chunk_size)
                video_no_flow = self.video_processor.postprocess_video(video=video_tensor_no_flow,
                                                                       output_type=output_type)

        # 10. Offload all models
        self.maybe_free_model_hooks()

        video_no_flow = None if not generate_no_flow else video_no_flow

        if not return_dict:
            return (video, video_no_flow)

        return AnimateDiffPipelineOutput(frames_flow=video, frames_no_flow=video_no_flow)