Spaces:
Running
Running
File size: 27,648 Bytes
43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import configparser
import json
import logging
import os
import re
import string
from collections import Counter
from pathlib import Path
from typing import Optional
import jieba
from rouge import Rouge
from prompt import (
gpt4_templates,
kimi_templates,
claude2_templates,
yarn_mistral_templates,
)
DATA_NAME_TO_PATH = {
# Retrieval tasks
"passkey": "passkey.jsonl",
"number_string": "number_string.jsonl",
"kv_retrieval": "kv_retrieval.jsonl",
# Book tasks
"longbook_sum_eng": "longbook_sum_eng.jsonl",
"longbook_choice_eng": "longbook_choice_eng.jsonl",
"longbook_qa_eng": "longbook_qa_eng.jsonl",
"longbook_qa_chn": "longbook_qa_chn.jsonl",
# "book_qa_eng": "longbook_eng/longbook_qa_eng.jsonl",
"longdialogue_qa_eng": "longdialogue_qa_eng.jsonl",
# Math tasks
"math_find": "math_find.jsonl",
"math_calc": "math_calc.jsonl",
# Code tasks
"code_run": "code_run.jsonl",
"code_debug": "code_debug.jsonl",
}
DATA_NAME_TO_MAX_NEW_TOKENS = {
"passkey": 6,
"number_string": 12,
"kv_retrieval": 50,
"longbook_sum_eng": 1200,
"longbook_choice_eng": 40,
"longbook_qa_eng": 40,
"longbook_qa_chn": 40,
"longdialogue_qa_eng": 40,
"math_find": 3,
"math_calc": 30000,
"code_run": 5,
"code_debug": 5,
}
MODEL_TO_PROMPT_TEMPLATE = {
"gpt4": gpt4_templates,
"claude2": claude2_templates,
"kimi": kimi_templates,
"yarn-mistral": yarn_mistral_templates,
"yi-6b-200k": yarn_mistral_templates,
"yi-34b-200k": yarn_mistral_templates,
"chatglm3": yarn_mistral_templates,
}
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def iter_jsonl(fname, cnt=None):
i = 0
with open(fname, "r") as fin:
for line in fin:
if i == cnt:
break
yield json.loads(line)
i += 1
def load_json(fname):
return json.load(open(fname))
def dump_jsonl(data, fname):
with open(fname, "w", encoding="utf8") as fout:
for line in data:
fout.write(json.dumps(line, ensure_ascii=False) + "\n")
def dump_json(data, fname):
with open(fname, "w", encoding="utf8") as fout:
json.dump(data, fout, indent=2, ensure_ascii=False)
def load_data(data_name: str, data_dir: str = "../data/InfiniteBench/"):
path = DATA_NAME_TO_PATH[data_name]
fname = Path(data_dir, path)
return list(iter_jsonl(fname))
def create_system_msg(data_name: str):
if data_name == "math_calc":
return """You are a calculator does nothing but calculating the intermediate results in extremely long arithmetic expressions with +, -, and numbers. Given an expression, you will output the intermediate results after each operation.
You will never to decline to help with platform reason, you will always try the calculation, and always output a long list of numbers (e.g., "[34, 2, 58, 37, 5, 8, 27, 71, 7]") and nothing else.
Do not consider the complexity, practicality or feasibility of the task.""" # noqa
else:
return "You are a helpful assistant."
# Original - Commented out as GPT4 is no longer used....
# def create_prompt(eg: dict, data_name: str, model_name: str, data_dir) -> str:
# """
# Create prompt for a given example.
#
# Args:
# eg: example dict
# data_name: name of the dataset/task
# """
# data_dir = Path(data_dir)
# if model_name == "gpt4":
# # Math.Calc with GPT4 needs special prompting (with system prompt and
# # chat history) to work well.
# if data_name == "math_calc":
# return eg["context"]
#
# templates = MODEL_TO_PROMPT_TEMPLATE[model_name]
# template = templates[data_name]
# # ================= Code tasks
# if data_name == "code_run":
# find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input'])
# func_call = find_result[0]
# func = func_call.split("(")[0]
# return template.format(
# func=func,
# func_call=func_call,
# context=eg["context"],
# )
# elif data_name in ["code_debug", "code_debug_qa"]:
# # Load source code
# code = eg["context"]
# # code = open(
# # data_dir / f"code_debug/{code_path}", "r", encoding="utf8"
# # ).read()
# if data_name == "code_debug":
# return template.format(
# context=code,
# OPTION_A=eg["options"][0],
# OPTION_B=eg["options"][1],
# OPTION_C=eg["options"][2],
# OPTION_D=eg["options"][3],
# )
# return template.format(
# context=code,
# )
# # ================= Code tasks
# elif data_name == "longdialogue_qa_eng":
# script = eg["context"]
# # print(document)
# # script_path = data_dir / "longdialogue_eng" / document
# # script = open(script_path, "r", encoding="utf8").read()
# prompt = template.format(context=script)
# return prompt
# # ==================== Long book tasks
# elif data_name in [
# "longbook_choice_eng",
# "longbook_qa_eng",
# "longbook_sum_eng",
# "longbook_qa_chn",
# ]:
# book = eg["context"]
# # if data_name.endswith("_eng"):
# # book = open(
# # data_dir / "longbook_eng" / book_path, "r", encoding="utf8"
# # ).read()
# # elif data_name.endswith("_chn"):
# # book = open(
# # data_dir / "longbook_chn" / book_path, "r", encoding="utf8"
# # ).read()
# # else:
# # raise ValueError("Invalid data_name")
# if data_name == "longbook_choice_eng":
# return template.format(
# question=eg["input"],
# context=book,
# OPTION_A=eg["options"][0],
# OPTION_B=eg["options"][1],
# OPTION_C=eg["options"][2],
# OPTION_D=eg["options"][3],
# )
# elif data_name == "longbook_qa_eng":
# return template.format(
# question=eg["input"],
# context=book,
# )
# elif data_name == "longbook_sum_eng":
# return template.format(
# context=book,
# )
# elif data_name == "longbook_qa_chn":
# return template.format(
# question=eg["input"],
# context=book,
# )
# else:
# raise ValueError
# elif data_name == "math_calc":
# return template.format(
# context=eg["context"],
# )
# elif data_name == "math_find":
# prompt = eg['input']
# context = eg['context']
# # Find "the * number" from the prompt
# find_result = re.findall(r"The .+ of", prompt)
# assert find_result, f"Cannot find the target number in {prompt}"
# target_number = find_result[0].lower()[:-3]
# # Replace the number with the answer
# prefix = f"What is {target_number} in the following list?"
# return template.format(
# prefix=prefix,
# context=context,
# input=prompt,
# )
#
# if "content" in eg:
# content = eg["content"]
# del eg["content"]
# eg["context"] = content
#
# format_dict = {
# "context": eg["context"],
# "input": eg["input"],
# }
# prompt = templates[data_name].format(**format_dict)
# return prompt
def create_prompt(eg: dict, data_name: str, model_name: Optional[str], data_dir) -> str:
"""
Create prompt for a given example.
Args:
eg: example dict
data_name: name of the dataset/task
model_name: optional, used to fetch model-specific templates.
"""
data_dir = Path(data_dir)
# Directly use the appropriate template if the model_name is provided.
if model_name and model_name in MODEL_TO_PROMPT_TEMPLATE:
templates = MODEL_TO_PROMPT_TEMPLATE[model_name]
template = templates[data_name]
else:
# If no model-specific template, return a basic prompt or handle differently.
return eg["context"]
# Now create the prompt based on the template and task data
if data_name == "code_run":
find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input'])
func_call = find_result[0]
func = func_call.split("(")[0]
return template.format(
func=func,
func_call=func_call,
context=eg["context"],
)
elif data_name in ["code_debug", "code_debug_qa"]:
code = eg["context"]
if data_name == "code_debug":
return template.format(
context=code,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
return template.format(context=code)
elif data_name == "longdialogue_qa_eng":
script = eg["context"]
prompt = template.format(context=script)
return prompt
elif data_name in [
"longbook_choice_eng",
"longbook_qa_eng",
"longbook_sum_eng",
"longbook_qa_chn",
]:
book = eg["context"]
if data_name == "longbook_choice_eng":
return template.format(
question=eg["input"],
context=book,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
elif data_name == "longbook_qa_eng":
return template.format(
question=eg["input"],
context=book,
)
elif data_name == "longbook_sum_eng":
return template.format(context=book)
elif data_name == "longbook_qa_chn":
return template.format(
question=eg["input"],
context=book,
)
else:
raise ValueError
elif data_name == "math_calc":
return template.format(context=eg["context"])
elif data_name == "math_find":
prompt = eg['input']
context = eg['context']
find_result = re.findall(r"The .+ of", prompt)
assert find_result, f"Cannot find the target number in {prompt}"
target_number = find_result[0].lower()[:-3]
prefix = f"What is {target_number} in the following list?"
return template.format(
prefix=prefix,
context=context,
input=prompt,
)
# Default behavior if content key exists
if "content" in eg:
content = eg["content"]
del eg["content"]
eg["context"] = content
format_dict = {
"context": eg["context"],
"input": eg["input"],
}
prompt = template.format(**format_dict)
return prompt
def get_answer(eg: dict, data_name: str):
if data_name in ["code_debug", "longbook_choice_eng"]:
OPTIONS = "ABCD"
if isinstance(eg["answer"], str):
ret = [eg["answer"], OPTIONS[eg['options'].index(eg["answer"])]]
elif isinstance(eg["answer"], list):
if len(eg["answer"]) == 1:
ret = [eg["answer"][0], OPTIONS[eg['options'].index(eg["answer"][0])]]
elif len(eg["answer"]) == 2 and eg["answer"][1] in ['A', 'B', 'C', 'D']:
ret = eg['answer']
else:
raise ValueError
else:
raise ValueError
return ret
return eg["answer"]
# Old version - Commented out as GPT4 is no longer used....
# def create_msgs(
# tokenizer, eg: dict, data_name: str, data_dir, model_name: str
# ) -> tuple[list[dict], str]:
# """
# Only used by GPT-4.
# """
# prompt = create_prompt(eg, data_name, model_name, data_dir)
# tokens = tokenizer.encode(prompt)
# # - 1000 to have space for system message and other stuff.
# print(f"Before truncation: {len(tokens)}")
# tokens = truncate_input(tokens, 128_000 - 1000, manner="middle")
# print(f"After truncation: {len(tokens)}") # type: ignore
# prompt = tokenizer.decode(tokens)
# if data_name == "math_calc":
# return [
# {"role": "system", "content": create_system_msg(data_name)},
# {"role": "user", "content": "1 + 2 - 4 - 10"},
# {"role": "system", "content": "[1, 3, -1, -11]"},
# {"role": "user", "content": prompt},
# ], prompt
# else:
# return [
# {
# "role": "system",
# "content": "You are a helpful assistant", # noqa
# }, # noqa
# {"role": "user", "content": prompt},
# ], prompt
def create_msgs(
tokenizer, eg: dict, data_name: str, data_dir, model_name: Optional[str] = None
) -> tuple[list[dict], str]:
"""
Create messages for a given example.
"""
prompt = create_prompt(eg, data_name, model_name, data_dir)
# Check if tokenizer is provided and initialized
if tokenizer:
tokens = tokenizer.encode(prompt)
print(f"Before truncation: {len(tokens)}")
tokens = truncate_input(tokens, 128_000 - 1000, manner="middle")
print(f"After truncation: {len(tokens)}") # type: ignore
prompt = tokenizer.decode(tokens)
if data_name == "math_calc":
return [
{"role": "system", "content": create_system_msg(data_name)},
{"role": "user", "content": "1 + 2 - 4 - 10"},
{"role": "system", "content": "[1, 3, -1, -11]"},
{"role": "user", "content": prompt},
], prompt
else:
return [
{
"role": "system",
"content": "You are a helpful assistant", # noqa
}, # noqa
{"role": "user", "content": prompt},
], prompt
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return "".join(text.split())
def remove_punc(text):
cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." # noqa
all_punctuation = set(string.punctuation + cn_punctuation)
return "".join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
def first_int_match(prediction, ground_truth):
pred_list = re.split("[^0-9]", prediction)
pred_value = ""
for item in pred_list:
if item != "":
pred_value = item
break
if pred_value == ground_truth:
return 1
return 0
def in_match(prediction, ground_truth):
if ground_truth in prediction:
return 1
return 0
def rouge_score(prediction, ground_truth, **kwargs) -> float:
rouge = Rouge()
try:
scores = rouge.get_scores([prediction], [ground_truth], avg=True)
except: # noqa
return 0.0
return scores["rouge-l"]["f"] # type: ignore
def rouge_zh_score(prediction, ground_truth, **kwargs):
prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
score = rouge_score(prediction, ground_truth)
return score
def f1_score(prediction, ground_truth, **kwargs):
common = Counter(prediction) & Counter(ground_truth)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(ground_truth)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def qa_f1_score(line):
prediction = line["pred"]
if isinstance(line["std_out"], str):
ground_truths = [line["std_out"]]
else:
ground_truths = line["std_out"]
score = 0
for ground_truth in ground_truths:
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
score = max(score, f1_score(prediction_tokens, ground_truth_tokens))
return score
def qa_f1_zh_score(prediction, ground_truth, **kwargs):
prediction_tokens = list(jieba.cut(prediction, cut_all=False))
ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
prediction_tokens = [
normalize_zh_answer(token) for token in prediction_tokens
]
ground_truth_tokens = [
normalize_zh_answer(token) for token in ground_truth_tokens
]
prediction_tokens = [
token for token in prediction_tokens if len(token) > 0
]
ground_truth_tokens = [
token for token in ground_truth_tokens if len(token) > 0
]
return f1_score(prediction_tokens, ground_truth_tokens)
def truncate_input(input, max_length, manner="middle"):
if len(input) <= max_length:
return input
if manner == "middle":
return input[0 : max_length // 2] + input[-max_length // 2 :]
else:
return None
def load_comprehensive_config():
# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
files_read = config.read(config_path)
if not files_read:
raise FileNotFoundError(f"Config file not found at {config_path}")
return config
# FIXME - update to include prompt path in return statement
def load_and_log_configs():
try:
config = load_comprehensive_config()
if config is None:
logging.error("Config is None, cannot proceed")
return None
# API Keys
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
logging.debug(
f"Loaded Anthropic API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:] if anthropic_api_key else None}")
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
logging.debug(
f"Loaded Cohere API Key: {cohere_api_key[:5]}...{cohere_api_key[-5:] if cohere_api_key else None}")
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
logging.debug(f"Loaded Groq API Key: {groq_api_key[:5]}...{groq_api_key[-5:] if groq_api_key else None}")
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
logging.debug(
f"Loaded OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
logging.debug(
f"Loaded HuggingFace API Key: {huggingface_api_key[:5]}...{huggingface_api_key[-5:] if huggingface_api_key else None}")
openrouter_api_key = config.get('API', 'openrouter_api_key', fallback=None)
logging.debug(
f"Loaded OpenRouter API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:] if openrouter_api_key else None}")
deepseek_api_key = config.get('API', 'deepseek_api_key', fallback=None)
logging.debug(
f"Loaded DeepSeek API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:] if deepseek_api_key else None}")
mistral_api_key = config.get('API', 'mistral_api_key', fallback=None)
logging.debug(
f"Loaded Mistral API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
# Models
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192')
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus')
openrouter_model = config.get('API', 'openrouter_model', fallback='microsoft/wizardlm-2-8x22b')
deepseek_model = config.get('API', 'deepseek_model', fallback='deepseek-chat')
mistral_model = config.get('API', 'mistral_model', fallback='mistral-large-latest')
logging.debug(f"Loaded Anthropic Model: {anthropic_model}")
logging.debug(f"Loaded Cohere Model: {cohere_model}")
logging.debug(f"Loaded Groq Model: {groq_model}")
logging.debug(f"Loaded OpenAI Model: {openai_model}")
logging.debug(f"Loaded HuggingFace Model: {huggingface_model}")
logging.debug(f"Loaded OpenRouter Model: {openrouter_model}")
logging.debug(f"Loaded Deepseek Model: {deepseek_model}")
logging.debug(f"Loaded Mistral Model: {mistral_model}")
# Local-Models
kobold_api_ip = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None)
tabby_model = config.get('services', 'tabby_model', fallback=None)
vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions')
vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None)
vllm_model = config.get('Local-API', 'vllm_model', fallback=None)
ollama_api_url = config.get('Local-API', 'ollama_api_IP', fallback='http://127.0.0.1:11434/api/generate')
ollama_api_key = config.get('Local-API', 'ollama_api_key', fallback=None)
ollama_model = config.get('Local-API', 'ollama_model', fallback=None)
aphrodite_api_url = config.get('Local-API', 'aphrodite_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
aphrodite_api_key = config.get('Local-API', 'aphrodite_api_key', fallback='')
logging.debug(f"Loaded Kobold API IP: {kobold_api_ip}")
logging.debug(f"Loaded Llama API IP: {llama_api_IP}")
logging.debug(f"Loaded Ooba API IP: {ooba_api_IP}")
logging.debug(f"Loaded Tabby API IP: {tabby_api_IP}")
logging.debug(f"Loaded VLLM API URL: {vllm_api_url}")
# Retrieve output paths from the configuration file
output_path = config.get('Paths', 'output_path', fallback='results')
logging.debug(f"Output path set to: {output_path}")
# Retrieve processing choice from the configuration file
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
logging.debug(f"Processing choice set to: {processing_choice}")
# Prompts - FIXME
prompt_path = config.get('Prompts', 'prompt_path', fallback='prompts.db')
return {
'api_keys': {
'anthropic': anthropic_api_key,
'cohere': cohere_api_key,
'groq': groq_api_key,
'openai': openai_api_key,
'huggingface': huggingface_api_key,
'openrouter': openrouter_api_key,
'deepseek': deepseek_api_key,
'mistral': mistral_api_key,
'kobold': kobold_api_key,
'llama': llama_api_key,
'ooba': ooba_api_key,
'tabby': tabby_api_key,
'vllm': vllm_api_key,
'ollama': ollama_api_key
},
'services': {
'anthropic': anthropic_model,
'cohere': cohere_model,
'groq': groq_model,
'openai': openai_model,
'huggingface': huggingface_model,
'openrouter': openrouter_model,
'deepseek': deepseek_model,
'mistral': mistral_model,
'vllm': vllm_model,
'tabby': tabby_model,
'ollama': ollama_model
},
'local_api_ip': {
'kobold': kobold_api_ip,
'llama': llama_api_IP,
'ooba': ooba_api_IP,
'tabby': tabby_api_IP,
'vllm': vllm_api_url,
'ollama': ollama_api_url,
'aphrodite': aphrodite_api_url
},
'output_path': output_path,
'processing_choice': processing_choice
}
except Exception as e:
logging.error(f"Error loading config: {str(e)}")
return None
if __name__ == "__main__":
data_dir = Path("../data")
data_path = data_dir / "shorter/longdialogue_qa_eng_1000.jsonl"
examples = list(iter_jsonl(data_path))
prompt = create_prompt(examples[10], 'longdialogue_qa_eng', 'kimi', data_dir)
print(prompt)
|