diff --git "a/App_Function_Libraries/LLM_API_Calls.py" "b/App_Function_Libraries/LLM_API_Calls.py" --- "a/App_Function_Libraries/LLM_API_Calls.py" +++ "b/App_Function_Libraries/LLM_API_Calls.py" @@ -1,1109 +1,1111 @@ -# Summarization_General_Lib.py -######################################### -# General Summarization Library -# This library is used to perform summarization. -# -#### -#################### -# Function List -# -# 1. extract_text_from_segments(segments: List[Dict]) -> str -# 2. chat_with_openai(api_key, file_path, custom_prompt_arg) -# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) -# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg) -# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None): -# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None) -# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None) -# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None) -# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None) -# -# -#################### -# -# Import necessary libraries -import json -import logging -import os -import time -from typing import List - -import requests -# -# Import 3rd-Party Libraries -# -# Import Local libraries -from App_Function_Libraries.Utils.Utils import load_and_log_configs -# -####################################################################################################################### -# Function Definitions -# - -#FIXME: Update to include full arguments - -def extract_text_from_segments(segments): - logging.debug(f"Segments received: {segments}") - logging.debug(f"Type of segments: {type(segments)}") - - text = "" - - if isinstance(segments, list): - for segment in segments: - logging.debug(f"Current segment: {segment}") - logging.debug(f"Type of segment: {type(segment)}") - if 'Text' in segment: - text += segment['Text'] + " " - else: - logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") - else: - logging.warning(f"Unexpected type of 'segments': {type(segments)}") - - return text.strip() - - - -def get_openai_embeddings(input_data: str, model: str) -> List[float]: - """ - Get embeddings for the input text from OpenAI API. - - Args: - input_data (str): The input text to get embeddings for. - model (str): The model to use for generating embeddings. - - Returns: - List[float]: The embeddings generated by the API. - """ - loaded_config_data = load_and_log_configs() - api_key = loaded_config_data['api_keys']['openai'] - - if not api_key: - logging.error("OpenAI: API key not found or is empty") - raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty") - - logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}") - logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") - logging.debug(f"OpenAI: Using model: {model}") - - headers = { - 'Authorization': f'Bearer {api_key}', - 'Content-Type': 'application/json' - } - - request_data = { - "input": input_data, - "model": model, - } - - try: - logging.debug("OpenAI: Posting request to embeddings API") - response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data) - logging.debug(f"Full API response data: {response}") - if response.status_code == 200: - response_data = response.json() - if 'data' in response_data and len(response_data['data']) > 0: - embedding = response_data['data'][0]['embedding'] - logging.debug("OpenAI: Embeddings retrieved successfully") - return embedding - else: - logging.warning("OpenAI: Embedding data not found in the response") - raise ValueError("OpenAI: Embedding data not available in the response") - else: - logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}") - logging.error(f"OpenAI: Error response: {response.text}") - raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}") - except requests.RequestException as e: - logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) - raise ValueError(f"OpenAI: Error making API request: {str(e)}") - except Exception as e: - logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) - raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}") - - -def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): - loaded_config_data = load_and_log_configs() - openai_api_key = api_key - try: - # API key validation - if not openai_api_key: - logging.info("OpenAI: API key not provided as parameter") - logging.info("OpenAI: Attempting to use API key from config file") - openai_api_key = loaded_config_data['api_keys']['openai'] - - if not openai_api_key: - logging.error("OpenAI: API key not found or is empty") - return "OpenAI: API Key Not Provided/Found in Config file or is empty" - - logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}") - - # Input data handling - logging.debug(f"OpenAI: Raw input data type: {type(input_data)}") - logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") - - if isinstance(input_data, str): - if input_data.strip().startswith('{'): - # It's likely a JSON string - logging.debug("OpenAI: Parsing provided JSON string data for summarization") - try: - data = json.loads(input_data) - except json.JSONDecodeError as e: - logging.error(f"OpenAI: Error parsing JSON string: {str(e)}") - return f"OpenAI: Error parsing JSON input: {str(e)}" - elif os.path.isfile(input_data): - logging.debug("OpenAI: Loading JSON data from file for summarization") - with open(input_data, 'r') as file: - data = json.load(file) - else: - logging.debug("OpenAI: Using provided string data for summarization") - data = input_data - else: - data = input_data - - logging.debug(f"OpenAI: Processed data type: {type(data)}") - logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...") - - # Text extraction - if isinstance(data, dict): - if 'summary' in data: - logging.debug("OpenAI: Summary already exists in the loaded data") - return data['summary'] - elif 'segments' in data: - text = extract_text_from_segments(data['segments']) - else: - text = json.dumps(data) # Convert dict to string if no specific format - elif isinstance(data, list): - text = extract_text_from_segments(data) - elif isinstance(data, str): - text = data - else: - raise ValueError(f"OpenAI: Invalid input data format: {type(data)}") - - logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...") - logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}") - - openai_model = loaded_config_data['models']['openai'] or "gpt-4o" - logging.debug(f"OpenAI: Using model: {openai_model}") - - headers = { - 'Authorization': f'Bearer {openai_api_key}', - 'Content-Type': 'application/json' - } - - logging.debug( - f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}") - logging.debug("openai: Preparing data + prompt for submittal") - openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - if temp is None: - temp = 0.7 - if system_message is None: - system_message = "You are a helpful AI assistant who does whatever the user requests." - temp = float(temp) - data = { - "model": openai_model, - "messages": [ - {"role": "system", "content": system_message}, - {"role": "user", "content": openai_prompt} - ], - "max_tokens": 4096, - "temperature": temp - } - - logging.debug("OpenAI: Posting request") - response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) - logging.debug(f"Full API response data: {response}") - if response.status_code == 200: - response_data = response.json() - logging.debug(response_data) - if 'choices' in response_data and len(response_data['choices']) > 0: - chat_response = response_data['choices'][0]['message']['content'].strip() - logging.debug("openai: Chat Sent successfully") - logging.debug(f"openai: Chat response: {chat_response}") - return chat_response - else: - logging.warning("openai: Chat response not found in the response data") - return "openai: Chat not available" - else: - logging.error(f"OpenAI: Chat request failed with status code {response.status_code}") - logging.error(f"OpenAI: Error response: {response.text}") - return f"OpenAI: Failed to process chat response. Status code: {response.status_code}" - except json.JSONDecodeError as e: - logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True) - return f"OpenAI: Error decoding JSON input: {str(e)}" - except requests.RequestException as e: - logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) - return f"OpenAI: Error making API request: {str(e)}" - except Exception as e: - logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) - return f"OpenAI: Unexpected error occurred: {str(e)}" - - -def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None): - try: - loaded_config_data = load_and_log_configs() - - # Check if config was loaded successfully - if loaded_config_data is None: - logging.error("Anthropic: Failed to load configuration data.") - return "Anthropic: Failed to load configuration data." - - # Initialize the API key - anthropic_api_key = api_key - - # API key validation - if not api_key: - logging.info("Anthropic: API key not provided as parameter") - logging.info("Anthropic: Attempting to use API key from config file") - # Ensure 'api_keys' and 'anthropic' keys exist - try: - anthropic_api_key = loaded_config_data['api_keys']['anthropic'] - logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") - except (KeyError, TypeError) as e: - logging.error(f"Anthropic: Error accessing API key from config: {str(e)}") - return "Anthropic: API Key Not Provided/Found in Config file or is empty" - - if not anthropic_api_key or anthropic_api_key == "": - logging.error("Anthropic: API key not found or is empty") - return "Anthropic: API Key Not Provided/Found in Config file or is empty" - - if anthropic_api_key: - logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") - else: - logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}") - - if system_prompt is not None: - logging.debug("Anthropic: Using provided system prompt") - pass - else: - system_prompt = "You are a helpful assistant" - logging.debug("Anthropic: Using default system prompt") - - logging.debug(f"AnthropicAI: Loaded data: {input_data}") - logging.debug(f"AnthropicAI: Type of data: {type(input_data)}") - - # Retrieve the model from config if not provided - if not model: - try: - anthropic_model = loaded_config_data['models']['anthropic'] - logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}") - except (KeyError, TypeError) as e: - logging.error(f"Anthropic: Error accessing model from config: {str(e)}") - return "Anthropic: Model configuration not found." - else: - anthropic_model = model - logging.debug(f"Anthropic: Using provided model: {anthropic_model}") - - if temp is None: - temp = 1.0 - logging.debug(f"Anthropic: Using default temperature: {temp}") - - headers = { - 'x-api-key': anthropic_api_key, - 'anthropic-version': '2023-06-01', - 'Content-Type': 'application/json' - } - - anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else "" - logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'") - user_message = { - "role": "user", - "content": f"{input_data} \n\n\n\n{anthropic_user_prompt}" - } - - data = { - "model": anthropic_model, - "max_tokens": 4096, # max possible tokens to return - "messages": [user_message], - "stop_sequences": ["\n\nHuman:"], - "temperature": temp, - "top_k": 0, - "top_p": 1.0, - "metadata": { - "user_id": "example_user_id", - }, - "stream": False, - "system": system_prompt - } - - for attempt in range(max_retries): - try: - logging.debug("Anthropic: Posting request to API") - response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) - logging.debug(f"Anthropic: Full API response data: {response}") - - # Check if the status code indicates success - if response.status_code == 200: - logging.debug("Anthropic: Post submittal successful") - response_data = response.json() - - # Corrected path to access the assistant's reply - if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0: - chat_response = response_data['content'][0]['text'].strip() - logging.debug("Anthropic: Chat request successful") - print("Chat request processed successfully.") - return chat_response - else: - logging.error("Anthropic: Unexpected data structure in response.") - print("Unexpected response format from Anthropic API:", response.text) - return "Anthropic: Unexpected response format from API." - elif response.status_code == 500: # Handle internal server error specifically - logging.debug("Anthropic: Internal server error") - print("Internal server error from API. Retrying may be necessary.") - time.sleep(retry_delay) - else: - logging.debug( - f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}") - print(f"Failed to process chat request, status code {response.status_code}: {response.text}") - return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}" - - except requests.RequestException as e: - logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") - if attempt < max_retries - 1: - logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...") - time.sleep(retry_delay) - else: - return f"Anthropic: Network error: {str(e)}" - - except Exception as e: - logging.error(f"Anthropic: Error in processing: {str(e)}") - return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}" - - -# Summarize with Cohere -def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None): - loaded_config_data = load_and_log_configs() - cohere_api_key = None - - try: - # API key validation - if api_key: - logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}") - cohere_api_key = api_key - else: - logging.info("Cohere Chat: API key not provided as parameter") - logging.info("Cohere Chat: Attempting to use API key from config file") - logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}") - cohere_api_key = loaded_config_data['api_keys']['cohere'] - if cohere_api_key: - logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}") - else: - logging.error("Cohere Chat: API key not found or is empty") - return "Cohere Chat: API Key Not Provided/Found in Config file or is empty" - - logging.debug(f"Cohere Chat: Loaded data: {input_data}") - logging.debug(f"Cohere Chat: Type of data: {type(input_data)}") - - # Ensure model is set - if not model: - model = loaded_config_data['models']['cohere'] - logging.debug(f"Cohere Chat: Using model: {model}") - - if temp is None: - temp = 0.3 - else: - try: - temp = float(temp) - except ValueError: - logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3") - temp = 0.3 - - headers = { - 'accept': 'application/json', - 'content-type': 'application/json', - 'Authorization': f'Bearer {cohere_api_key}' - } - - # Ensure system_prompt is set - if not system_prompt: - system_prompt = "You are a helpful assistant" - logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'") - - cohere_prompt = input_data - if custom_prompt_arg: - cohere_prompt += f"\n\n{custom_prompt_arg}" - logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'") - - data = { - "model" : model, - "temperature": temp, - "messages": [ - { - "role": "system", - "content": system_prompt - }, - { - "role": "user", - "content": cohere_prompt, - } - ], - } - logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}") - - logging.debug("cohere chat: Submitting request to API endpoint") - print("cohere chat: Submitting request to API endpoint") - - try: - response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data) - logging.debug(f"Cohere Chat: Raw API response: {response.text}") - except requests.RequestException as e: - logging.error(f"Cohere Chat: Error making API request: {str(e)}") - return f"Cohere Chat: Error making API request: {str(e)}" - - if response.status_code == 200: - try: - response_data = response.json() - except json.JSONDecodeError: - logging.error("Cohere Chat: Failed to decode JSON response") - return "Cohere Chat: Failed to decode JSON response" - - if response_data is None: - logging.error("Cohere Chat: No response data received.") - return "Cohere Chat: No response data received." - - logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}") - - if 'message' in response_data and 'content' in response_data['message']: - content = response_data['message']['content'] - if isinstance(content, list) and len(content) > 0: - # Extract text from the first content block - text = content[0].get('text', '').strip() - if text: - logging.debug("Cohere Chat: Chat request successful") - print("Cohere Chat request processed successfully.") - return text - else: - logging.error("Cohere Chat: 'text' field is empty in response content.") - return "Cohere Chat: 'text' field is empty in response content." - else: - logging.error("Cohere Chat: 'content' field is not a list or is empty.") - return "Cohere Chat: 'content' field is not a list or is empty." - else: - logging.error("Cohere Chat: 'message' or 'content' field not found in API response.") - return "Cohere Chat: 'message' or 'content' field not found in API response." - - elif response.status_code == 401: - error_message = "Cohere Chat: Unauthorized - Invalid API key" - logging.warning(error_message) - print(error_message) - return error_message - - else: - logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}") - print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}") - return f"Cohere Chat: API request failed: {response.text}" - - except Exception as e: - logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True) - return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}" - - -# https://console.groq.com/docs/quickstart -def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): - logging.debug("Groq: Summarization process starting...") - try: - logging.debug("Groq: Loading and validating configurations") - loaded_config_data = load_and_log_configs() - if loaded_config_data is None: - logging.error("Failed to load configuration data") - groq_api_key = None - else: - # Prioritize the API key passed as a parameter - if api_key and api_key.strip(): - groq_api_key = api_key - logging.info("Groq: Using API key provided as parameter") - else: - # If no parameter is provided, use the key from the config - groq_api_key = loaded_config_data['api_keys'].get('groq') - if groq_api_key: - logging.info("Groq: Using API key from config file") - else: - logging.warning("Groq: No API key found in config file") - - # Final check to ensure we have a valid API key - if not groq_api_key or not groq_api_key.strip(): - logging.error("Anthropic: No valid API key available") - # You might want to raise an exception here or handle this case as appropriate for your application - # For example: raise ValueError("No valid Anthropic API key available") - - logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}") - - # Transcript data handling & Validation - if isinstance(input_data, str) and os.path.isfile(input_data): - logging.debug("Groq: Loading json data for summarization") - with open(input_data, 'r') as file: - data = json.load(file) - else: - logging.debug("Groq: Using provided string data for summarization") - data = input_data - - # DEBUG - Debug logging to identify sent data - logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)") - logging.debug(f"Groq: Type of data: {type(data)}") - - if isinstance(data, dict) and 'summary' in data: - # If the loaded data is a dictionary and already contains a summary, return it - logging.debug("Groq: Summary already exists in the loaded data") - return data['summary'] - - # If the loaded data is a list of segment dictionaries or a string, proceed with summarization - if isinstance(data, list): - segments = data - text = extract_text_from_segments(segments) - elif isinstance(data, str): - text = data - else: - raise ValueError("Groq: Invalid input data format") - - # Set the model to be used - groq_model = loaded_config_data['models']['groq'] - - if temp is None: - temp = 0.2 - temp = float(temp) - if system_message is None: - system_message = "You are a helpful AI assistant who does whatever the user requests." - - headers = { - 'Authorization': f'Bearer {groq_api_key}', - 'Content-Type': 'application/json' - } - - groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - logging.debug("groq: Prompt being sent is {groq_prompt}") - - data = { - "messages": [ - { - "role": "system", - "content": system_message, - }, - { - "role": "user", - "content": groq_prompt, - } - ], - "model": groq_model, - "temperature": temp - } - - logging.debug("groq: Submitting request to API endpoint") - print("groq: Submitting request to API endpoint") - response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) - - response_data = response.json() - logging.debug(f"Full API response data: {response_data}") - - if response.status_code == 200: - logging.debug(response_data) - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("groq: Chat request successful") - print("Groq: Chat request successful.") - return summary - else: - logging.error("Groq(chat): Expected data not found in API response.") - return "Groq(chat): Expected data not found in API response." - else: - logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") - return f"groq: API request failed: {response.text}" - - except Exception as e: - logging.error("groq: Error in processing: %s", str(e)) - return f"groq: Error occurred while processing summary with groq: {str(e)}" - - -def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): - import requests - import json - global openrouter_model, openrouter_api_key - try: - logging.debug("OpenRouter: Loading and validating configurations") - loaded_config_data = load_and_log_configs() - if loaded_config_data is None: - logging.error("Failed to load configuration data") - openrouter_api_key = None - else: - # Prioritize the API key passed as a parameter - if api_key and api_key.strip(): - openrouter_api_key = api_key - logging.info("OpenRouter: Using API key provided as parameter") - else: - # If no parameter is provided, use the key from the config - openrouter_api_key = loaded_config_data['api_keys'].get('openrouter') - if openrouter_api_key: - logging.info("OpenRouter: Using API key from config file") - else: - logging.warning("OpenRouter: No API key found in config file") - - # Model Selection validation - logging.debug("OpenRouter: Validating model selection") - loaded_config_data = load_and_log_configs() - openrouter_model = loaded_config_data['models']['openrouter'] - logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}") - - # Final check to ensure we have a valid API key - if not openrouter_api_key or not openrouter_api_key.strip(): - logging.error("OpenRouter: No valid API key available") - raise ValueError("No valid Anthropic API key available") - except Exception as e: - logging.error("OpenRouter: Error in processing: %s", str(e)) - return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}" - - logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}") - - logging.debug(f"OpenRouter: Using Model: {openrouter_model}") - - if isinstance(input_data, str) and os.path.isfile(input_data): - logging.debug("OpenRouter: Loading json data for summarization") - with open(input_data, 'r') as file: - data = json.load(file) - else: - logging.debug("OpenRouter: Using provided string data for summarization") - data = input_data - - # DEBUG - Debug logging to identify sent data - logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)") - logging.debug(f"OpenRouter: Type of data: {type(data)}") - - if isinstance(data, dict) and 'summary' in data: - # If the loaded data is a dictionary and already contains a summary, return it - logging.debug("OpenRouter: Summary already exists in the loaded data") - return data['summary'] - - # If the loaded data is a list of segment dictionaries or a string, proceed with summarization - if isinstance(data, list): - segments = data - text = extract_text_from_segments(segments) - elif isinstance(data, str): - text = data - else: - raise ValueError("OpenRouter: Invalid input data format") - - openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}" - logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}") - - if temp is None: - temp = 0.1 - temp = float(temp) - if system_message is None: - system_message = "You are a helpful AI assistant who does whatever the user requests." - - try: - logging.debug("OpenRouter: Submitting request to API endpoint") - print("OpenRouter: Submitting request to API endpoint") - response = requests.post( - url="https://openrouter.ai/api/v1/chat/completions", - headers={ - "Authorization": f"Bearer {openrouter_api_key}", - }, - data=json.dumps({ - "model": openrouter_model, - "messages": [ - {"role": "system", "content": system_message}, - {"role": "user", "content": openrouter_prompt} - ], - "temperature": temp - }) - ) - - response_data = response.json() - logging.debug("Full API Response Data: %s", response_data) - - if response.status_code == 200: - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("openrouter: Chat request successful") - print("openrouter: Chat request successful.") - return summary - else: - logging.error("openrouter: Expected data not found in API response.") - return "openrouter: Expected data not found in API response." - else: - logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") - return f"openrouter: API request failed: {response.text}" - except Exception as e: - logging.error("openrouter: Error in processing: %s", str(e)) - return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}" - - -# FIXME: This function is not yet implemented properly -def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None): - loaded_config_data = load_and_log_configs() - logging.debug(f"huggingface Chat: Chat request process starting...") - try: - # API key validation - if not api_key or api_key.strip() == "": - logging.info("HuggingFace Chat: API key not provided as parameter") - logging.info("HuggingFace Chat: Attempting to use API key from config file") - - huggingface_api_key = loaded_config_data['api_keys'].get('huggingface') - logging.debug(f"HuggingFace Chat: API key from config: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}") - - if huggingface_api_key is None or huggingface_api_key.strip() == "": - logging.error("HuggingFace Chat: API key not found or is empty") - return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty" - if huggingface_api_key: - logging.info("HuggingFace Chat: Using API key from config file") - headers = { - "Authorization": f"Bearer {huggingface_api_key}" - } - - # Setup model - huggingface_model = loaded_config_data['models']['huggingface'] - - API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions" - if temp is None: - temp = 1.0 - temp = float(temp) - huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}" - logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}") - data = { - "model": f"{huggingface_model}", - "messages": [{"role": "user", "content": f"{huggingface_prompt}"}], - "max_tokens": 4096, - "stream": False, - "temperature": temp - } - - logging.debug("HuggingFace Chat: Submitting request...") - response = requests.post(API_URL, headers=headers, json=data) - logging.debug(f"Full API response data: {response.text}") - - if response.status_code == 200: - response_json = response.json() - if "choices" in response_json and len(response_json["choices"]) > 0: - generated_text = response_json["choices"][0]["message"]["content"] - logging.debug("HuggingFace Chat: Chat request successful") - print("HuggingFace Chat: Chat request successful.") - return generated_text.strip() - else: - logging.error("HuggingFace Chat: No generated text in the response") - return "HuggingFace Chat: No generated text in the response" - else: - logging.error( - f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}") - return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}" - except Exception as e: - logging.error(f"HuggingFace Chat: Error in processing: {str(e)}") - print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}") - return None - - -def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5): - """ - Interacts with the DeepSeek API to generate summaries based on input data. - - Parameters: - api_key (str): DeepSeek API key. If not provided, the key from the config is used. - input_data (str or list): The data to summarize. Can be a string or a list of segments. - custom_prompt_arg (str): Custom prompt to append to the input data. - temp (float, optional): Temperature setting for the model. Defaults to 0.1. - system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message. - max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3. - retry_delay (int, optional): Delay between retries in seconds. Defaults to 5. - - Returns: - str: The summary generated by DeepSeek or an error message. - """ - logging.debug("DeepSeek: Summarization process starting...") - try: - logging.debug("DeepSeek: Loading and validating configurations") - loaded_config_data = load_and_log_configs() - if loaded_config_data is None: - logging.error("DeepSeek: Failed to load configuration data") - return "DeepSeek: Failed to load configuration data." - - # Prioritize the API key passed as a parameter - if api_key and api_key.strip(): - deepseek_api_key = api_key.strip() - logging.info("DeepSeek: Using API key provided as parameter") - else: - # If no parameter is provided, use the key from the config - deepseek_api_key = loaded_config_data['api_keys'].get('deepseek') - if deepseek_api_key and deepseek_api_key.strip(): - deepseek_api_key = deepseek_api_key.strip() - logging.info("DeepSeek: Using API key from config file") - else: - logging.error("DeepSeek: No valid API key available") - return "DeepSeek: API Key Not Provided/Found in Config file or is empty" - - logging.debug("DeepSeek: Using API Key") - - # Input data handling - if isinstance(input_data, str) and os.path.isfile(input_data): - logging.debug("DeepSeek: Loading JSON data for summarization") - with open(input_data, 'r', encoding='utf-8') as file: - try: - data = json.load(file) - except json.JSONDecodeError as e: - logging.error(f"DeepSeek: JSON decoding failed: {str(e)}") - return f"DeepSeek: Invalid JSON file. Error: {str(e)}" - else: - logging.debug("DeepSeek: Using provided string data for summarization") - data = input_data - - # DEBUG - Debug logging to identify sent data - if isinstance(data, str): - snipped_data = data[:500] + "..." if len(data) > 500 else data - logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}") - elif isinstance(data, list): - snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2) - logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}") - else: - logging.debug(f"DeepSeek: Loaded data: {data}") - - logging.debug(f"DeepSeek: Type of data: {type(data)}") - - if isinstance(data, dict) and 'summary' in data: - # If the loaded data is a dictionary and already contains a summary, return it - logging.debug("DeepSeek: Summary already exists in the loaded data") - return data['summary'] - - # Text extraction - if isinstance(data, list): - segments = data - try: - text = extract_text_from_segments(segments) - logging.debug("DeepSeek: Extracted text from segments") - except Exception as e: - logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}") - return f"DeepSeek: Error extracting text from segments: {str(e)}" - elif isinstance(data, str): - text = data - logging.debug("DeepSeek: Using string data directly") - else: - raise ValueError("DeepSeek: Invalid input data format") - - # Retrieve the model from config if not provided - deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat") - logging.debug(f"DeepSeek: Using model: {deepseek_model}") - - # Ensure temperature is a float within acceptable range - try: - temp = float(temp) - if not (0.0 <= temp <= 1.0): - logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1") - temp = 0.1 - except (ValueError, TypeError): - logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1") - temp = 0.1 - - # Set default system prompt if not provided - if system_message is not None: - logging.debug("DeepSeek: Using provided system prompt") - else: - system_message = "You are a helpful AI assistant who does whatever the user requests." - logging.debug("DeepSeek: Using default system prompt") - - headers = { - 'Authorization': f'Bearer {deepseek_api_key}', - 'Content-Type': 'application/json' - } - - logging.debug("DeepSeek: Preparing data and prompt for submittal") - deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}" - payload = { - "model": deepseek_model, - "messages": [ - {"role": "system", "content": system_message}, - {"role": "user", "content": deepseek_prompt} - ], - "stream": False, - "temperature": temp - } - - logging.debug("DeepSeek: Posting request to API") - for attempt in range(1, max_retries + 1): - try: - response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30) - logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}") - - if response.status_code == 200: - response_data = response.json() - logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}") - - # Adjust parsing based on actual API response structure - if 'choices' in response_data: - if len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("DeepSeek: Chat request successful") - return summary - else: - logging.error("DeepSeek: 'choices' key is empty in response") - else: - logging.error("DeepSeek: 'choices' key missing in response") - return "DeepSeek: Unexpected response format from API." - elif 500 <= response.status_code < 600: - logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") - else: - logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}") - return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}" - - except requests.Timeout: - logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") - except requests.RequestException as e: - logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") - - if attempt < max_retries: - time.sleep(retry_delay) - else: - logging.error("DeepSeek: Max retries reached. Failed to get a successful response.") - return "DeepSeek: Failed to get a successful response from API after multiple attempts." - - except Exception as e: - logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True) - return f"DeepSeek: Error occurred while processing chat request: {str(e)}" - - - - -def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): - logging.debug("Mistral: Chat request made") - try: - logging.debug("Mistral: Loading and validating configurations") - loaded_config_data = load_and_log_configs() - if loaded_config_data is None: - logging.error("Failed to load configuration data") - mistral_api_key = None - else: - # Prioritize the API key passed as a parameter - if api_key and api_key.strip(): - mistral_api_key = api_key - logging.info("Mistral: Using API key provided as parameter") - else: - # If no parameter is provided, use the key from the config - mistral_api_key = loaded_config_data['api_keys'].get('mistral') - if mistral_api_key: - logging.info("Mistral: Using API key from config file") - else: - logging.warning("Mistral: No API key found in config file") - - # Final check to ensure we have a valid API key - if not mistral_api_key or not mistral_api_key.strip(): - logging.error("Mistral: No valid API key available") - return "Mistral: No valid API key available" - - logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}") - - logging.debug("Mistral: Using provided string data") - data = input_data - - # Text extraction - if isinstance(input_data, list): - text = extract_text_from_segments(input_data) - elif isinstance(input_data, str): - text = input_data - else: - raise ValueError("Mistral: Invalid input data format") - - mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest") - - temp = float(temp) if temp is not None else 0.2 - if system_message is None: - system_message = "You are a helpful AI assistant who does whatever the user requests." - - headers = { - 'Authorization': f'Bearer {mistral_api_key}', - 'Content-Type': 'application/json' - } - - logging.debug( - f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}") - logging.debug("Mistral: Preparing data + prompt for submittal") - mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} " - data = { - "model": mistral_model, - "messages": [ - {"role": "system", - "content": system_message}, - {"role": "user", - "content": mistral_prompt} - ], - "temperature": temp, - "top_p": 1, - "max_tokens": 4096, - "stream": False, - "safe_prompt": False - } - - logging.debug("Mistral: Posting request") - response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data) - logging.debug(f"Full API response data: {response}") - if response.status_code == 200: - response_data = response.json() - logging.debug(response_data) - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("Mistral: request successful") - return summary - else: - logging.warning("Mistral: Chat response not found in the response data") - return "Mistral: Chat response not available" - else: - logging.error(f"Mistral: Chat request failed with status code {response.status_code}") - logging.error(f"Mistral: Error response: {response.text}") - return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}" - except Exception as e: - logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True) - return f"Mistral: Error occurred while processing Chat: {str(e)}" - - - -# Stashed in here since OpenAI usage.... #FIXME -# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. -# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None): -# loaded_config_data = load_and_log_configs() -# llm_model = loaded_config_data['models']['vllm'] -# # API key validation -# if api_key is None: -# logging.info("vLLM: API key not provided as parameter") -# logging.info("vLLM: Attempting to use API key from config file") -# api_key = loaded_config_data['api_keys']['llama'] -# -# if api_key is None or api_key.strip() == "": -# logging.info("vLLM: API key not found or is empty") -# vllm_client = OpenAI( -# base_url=vllm_api_url, -# api_key=custom_prompt_input -# ) -# -# if isinstance(input_data, str) and os.path.isfile(input_data): -# logging.debug("vLLM: Loading json data for summarization") -# with open(input_data, 'r') as file: -# data = json.load(file) -# else: -# logging.debug("vLLM: Using provided string data for summarization") -# data = input_data -# -# logging.debug(f"vLLM: Loaded data: {data}") -# logging.debug(f"vLLM: Type of data: {type(data)}") -# -# if isinstance(data, dict) and 'summary' in data: -# # If the loaded data is a dictionary and already contains a summary, return it -# logging.debug("vLLM: Summary already exists in the loaded data") -# return data['summary'] -# -# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization -# if isinstance(data, list): -# segments = data -# text = extract_text_from_segments(segments) -# elif isinstance(data, str): -# text = data -# else: -# raise ValueError("Invalid input data format") -# -# -# custom_prompt = custom_prompt_input -# -# completion = client.chat.completions.create( -# model=llm_model, -# messages=[ -# {"role": "system", "content": f"{system_prompt}"}, -# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} -# ] -# ) -# vllm_summary = completion.choices[0].message.content -# return vllm_summary - - - -# -# +# Summarization_General_Lib.py +######################################### +# General Summarization Library +# This library is used to perform summarization. +# +#### +#################### +# Function List +# +# 1. extract_text_from_segments(segments: List[Dict]) -> str +# 2. chat_with_openai(api_key, file_path, custom_prompt_arg) +# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) +# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg) +# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None): +# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None) +# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None) +# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None) +# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None) +# +# +#################### +# +# Import necessary libraries +import json +import logging +import os +import time +from typing import List + +import requests +# +# Import 3rd-Party Libraries +# +# Import Local libraries +from App_Function_Libraries.Utils.Utils import load_and_log_configs +# +####################################################################################################################### +# Function Definitions +# + +#FIXME: Update to include full arguments + +def extract_text_from_segments(segments): + logging.debug(f"Segments received: {segments}") + logging.debug(f"Type of segments: {type(segments)}") + + text = "" + + if isinstance(segments, list): + for segment in segments: + logging.debug(f"Current segment: {segment}") + logging.debug(f"Type of segment: {type(segment)}") + if 'Text' in segment: + text += segment['Text'] + " " + else: + logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") + else: + logging.warning(f"Unexpected type of 'segments': {type(segments)}") + + return text.strip() + + + +def get_openai_embeddings(input_data: str, model: str) -> List[float]: + """ + Get embeddings for the input text from OpenAI API. + + Args: + input_data (str): The input text to get embeddings for. + model (str): The model to use for generating embeddings. + + Returns: + List[float]: The embeddings generated by the API. + """ + loaded_config_data = load_and_log_configs() + api_key = loaded_config_data['api_keys']['openai'] + + if not api_key: + logging.error("OpenAI: API key not found or is empty") + raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty") + + logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}") + logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") + logging.debug(f"OpenAI: Using model: {model}") + + headers = { + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' + } + + request_data = { + "input": input_data, + "model": model, + } + + try: + logging.debug("OpenAI: Posting request to embeddings API") + response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data) + logging.debug(f"Full API response data: {response}") + if response.status_code == 200: + response_data = response.json() + if 'data' in response_data and len(response_data['data']) > 0: + embedding = response_data['data'][0]['embedding'] + logging.debug("OpenAI: Embeddings retrieved successfully") + return embedding + else: + logging.warning("OpenAI: Embedding data not found in the response") + raise ValueError("OpenAI: Embedding data not available in the response") + else: + logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}") + logging.error(f"OpenAI: Error response: {response.text}") + raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}") + except requests.RequestException as e: + logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) + raise ValueError(f"OpenAI: Error making API request: {str(e)}") + except Exception as e: + logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) + raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}") + + +def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): + loaded_config_data = load_and_log_configs() + openai_api_key = api_key + try: + # API key validation + if not openai_api_key: + logging.info("OpenAI: API key not provided as parameter") + logging.info("OpenAI: Attempting to use API key from config file") + openai_api_key = loaded_config_data['api_keys']['openai'] + + if not openai_api_key: + logging.error("OpenAI: API key not found or is empty") + return "OpenAI: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}") + + # Input data handling + logging.debug(f"OpenAI: Raw input data type: {type(input_data)}") + logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") + + if isinstance(input_data, str): + if input_data.strip().startswith('{'): + # It's likely a JSON string + logging.debug("OpenAI: Parsing provided JSON string data for summarization") + try: + data = json.loads(input_data) + except json.JSONDecodeError as e: + logging.error(f"OpenAI: Error parsing JSON string: {str(e)}") + return f"OpenAI: Error parsing JSON input: {str(e)}" + elif os.path.isfile(input_data): + logging.debug("OpenAI: Loading JSON data from file for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("OpenAI: Using provided string data for summarization") + data = input_data + else: + data = input_data + + logging.debug(f"OpenAI: Processed data type: {type(data)}") + logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...") + + # Text extraction + if isinstance(data, dict): + if 'summary' in data: + logging.debug("OpenAI: Summary already exists in the loaded data") + return data['summary'] + elif 'segments' in data: + text = extract_text_from_segments(data['segments']) + else: + text = json.dumps(data) # Convert dict to string if no specific format + elif isinstance(data, list): + text = extract_text_from_segments(data) + elif isinstance(data, str): + text = data + else: + raise ValueError(f"OpenAI: Invalid input data format: {type(data)}") + + logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...") + logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}") + + openai_model = loaded_config_data['models']['openai'] or "gpt-4o" + logging.debug(f"OpenAI: Using model: {openai_model}") + + headers = { + 'Authorization': f'Bearer {openai_api_key}', + 'Content-Type': 'application/json' + } + + logging.debug( + f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}") + logging.debug("openai: Preparing data + prompt for submittal") + openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + if temp is None: + temp = 0.7 + if system_message is None: + system_message = "You are a helpful AI assistant who does whatever the user requests." + temp = float(temp) + data = { + "model": openai_model, + "messages": [ + {"role": "system", "content": system_message}, + {"role": "user", "content": openai_prompt} + ], + "max_tokens": 4096, + "temperature": temp + } + + logging.debug("OpenAI: Posting request") + response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) + logging.debug(f"Full API response data: {response}") + if response.status_code == 200: + response_data = response.json() + logging.debug(response_data) + if 'choices' in response_data and len(response_data['choices']) > 0: + chat_response = response_data['choices'][0]['message']['content'].strip() + logging.debug("openai: Chat Sent successfully") + logging.debug(f"openai: Chat response: {chat_response}") + return chat_response + else: + logging.warning("openai: Chat response not found in the response data") + return "openai: Chat not available" + else: + logging.error(f"OpenAI: Chat request failed with status code {response.status_code}") + logging.error(f"OpenAI: Error response: {response.text}") + return f"OpenAI: Failed to process chat response. Status code: {response.status_code}" + except json.JSONDecodeError as e: + logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True) + return f"OpenAI: Error decoding JSON input: {str(e)}" + except requests.RequestException as e: + logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) + return f"OpenAI: Error making API request: {str(e)}" + except Exception as e: + logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) + return f"OpenAI: Unexpected error occurred: {str(e)}" + + +def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None): + try: + loaded_config_data = load_and_log_configs() + + # Check if config was loaded successfully + if loaded_config_data is None: + logging.error("Anthropic: Failed to load configuration data.") + return "Anthropic: Failed to load configuration data." + + # Initialize the API key + anthropic_api_key = api_key + + # API key validation + if not api_key: + logging.info("Anthropic: API key not provided as parameter") + logging.info("Anthropic: Attempting to use API key from config file") + # Ensure 'api_keys' and 'anthropic' keys exist + try: + anthropic_api_key = loaded_config_data['api_keys']['anthropic'] + logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") + except (KeyError, TypeError) as e: + logging.error(f"Anthropic: Error accessing API key from config: {str(e)}") + return "Anthropic: API Key Not Provided/Found in Config file or is empty" + + if not anthropic_api_key or anthropic_api_key == "": + logging.error("Anthropic: API key not found or is empty") + return "Anthropic: API Key Not Provided/Found in Config file or is empty" + + if anthropic_api_key: + logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") + else: + logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + if system_prompt is not None: + logging.debug("Anthropic: Using provided system prompt") + pass + else: + system_prompt = "You are a helpful assistant" + logging.debug("Anthropic: Using default system prompt") + + logging.debug(f"AnthropicAI: Loaded data: {input_data}") + logging.debug(f"AnthropicAI: Type of data: {type(input_data)}") + + # Retrieve the model from config if not provided + if not model: + try: + anthropic_model = loaded_config_data['models']['anthropic'] + logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}") + except (KeyError, TypeError) as e: + logging.error(f"Anthropic: Error accessing model from config: {str(e)}") + return "Anthropic: Model configuration not found." + else: + anthropic_model = model + logging.debug(f"Anthropic: Using provided model: {anthropic_model}") + + if temp is None: + temp = 1.0 + logging.debug(f"Anthropic: Using default temperature: {temp}") + + headers = { + 'x-api-key': anthropic_api_key, + 'anthropic-version': '2023-06-01', + 'Content-Type': 'application/json' + } + + anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else "" + logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'") + user_message = { + "role": "user", + "content": f"{input_data} \n\n\n\n{anthropic_user_prompt}" + } + + data = { + "model": anthropic_model, + "max_tokens": 4096, # max possible tokens to return + "messages": [user_message], + "stop_sequences": ["\n\nHuman:"], + "temperature": temp, + "top_k": 0, + "top_p": 1.0, + "metadata": { + "user_id": "example_user_id", + }, + "stream": False, + "system": system_prompt + } + + for attempt in range(max_retries): + try: + logging.debug("Anthropic: Posting request to API") + response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) + logging.debug(f"Anthropic: Full API response data: {response}") + + # Check if the status code indicates success + if response.status_code == 200: + logging.debug("Anthropic: Post submittal successful") + response_data = response.json() + + # Corrected path to access the assistant's reply + if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0: + chat_response = response_data['content'][0]['text'].strip() + logging.debug("Anthropic: Chat request successful") + print("Chat request processed successfully.") + return chat_response + else: + logging.error("Anthropic: Unexpected data structure in response.") + print("Unexpected response format from Anthropic API:", response.text) + return "Anthropic: Unexpected response format from API." + elif response.status_code == 500: # Handle internal server error specifically + logging.debug("Anthropic: Internal server error") + print("Internal server error from API. Retrying may be necessary.") + time.sleep(retry_delay) + else: + logging.debug( + f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}") + print(f"Failed to process chat request, status code {response.status_code}: {response.text}") + return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}" + + except requests.RequestException as e: + logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") + if attempt < max_retries - 1: + logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...") + time.sleep(retry_delay) + else: + return f"Anthropic: Network error: {str(e)}" + + except Exception as e: + logging.error(f"Anthropic: Error in processing: {str(e)}") + return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}" + + +# Summarize with Cohere +def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None): + loaded_config_data = load_and_log_configs() + cohere_api_key = None + + try: + # API key validation + if api_key: + logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}") + cohere_api_key = api_key + else: + logging.info("Cohere Chat: API key not provided as parameter") + logging.info("Cohere Chat: Attempting to use API key from config file") + logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}") + cohere_api_key = loaded_config_data['api_keys']['cohere'] + if cohere_api_key: + logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}") + else: + logging.error("Cohere Chat: API key not found or is empty") + return "Cohere Chat: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"Cohere Chat: Loaded data: {input_data}") + logging.debug(f"Cohere Chat: Type of data: {type(input_data)}") + + # Ensure model is set + if not model: + model = loaded_config_data['models']['cohere'] + logging.debug(f"Cohere Chat: Using model: {model}") + + if temp is None: + temp = 0.3 + else: + try: + temp = float(temp) + except ValueError: + logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3") + temp = 0.3 + + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + 'Authorization': f'Bearer {cohere_api_key}' + } + + # Ensure system_prompt is set + if not system_prompt: + system_prompt = "You are a helpful assistant" + logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'") + + cohere_prompt = input_data + if custom_prompt_arg: + cohere_prompt += f"\n\n{custom_prompt_arg}" + logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'") + + data = { + "model" : model, + "temperature": temp, + "messages": [ + { + "role": "system", + "content": system_prompt + }, + { + "role": "user", + "content": cohere_prompt, + } + ], + } + logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}") + + logging.debug("cohere chat: Submitting request to API endpoint") + print("cohere chat: Submitting request to API endpoint") + + try: + response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data) + logging.debug(f"Cohere Chat: Raw API response: {response.text}") + except requests.RequestException as e: + logging.error(f"Cohere Chat: Error making API request: {str(e)}") + return f"Cohere Chat: Error making API request: {str(e)}" + + if response.status_code == 200: + try: + response_data = response.json() + except json.JSONDecodeError: + logging.error("Cohere Chat: Failed to decode JSON response") + return "Cohere Chat: Failed to decode JSON response" + + if response_data is None: + logging.error("Cohere Chat: No response data received.") + return "Cohere Chat: No response data received." + + logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}") + + if 'message' in response_data and 'content' in response_data['message']: + content = response_data['message']['content'] + if isinstance(content, list) and len(content) > 0: + # Extract text from the first content block + text = content[0].get('text', '').strip() + if text: + logging.debug("Cohere Chat: Chat request successful") + print("Cohere Chat request processed successfully.") + return text + else: + logging.error("Cohere Chat: 'text' field is empty in response content.") + return "Cohere Chat: 'text' field is empty in response content." + else: + logging.error("Cohere Chat: 'content' field is not a list or is empty.") + return "Cohere Chat: 'content' field is not a list or is empty." + else: + logging.error("Cohere Chat: 'message' or 'content' field not found in API response.") + return "Cohere Chat: 'message' or 'content' field not found in API response." + + elif response.status_code == 401: + error_message = "Cohere Chat: Unauthorized - Invalid API key" + logging.warning(error_message) + print(error_message) + return error_message + + else: + logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}") + print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}") + return f"Cohere Chat: API request failed: {response.text}" + + except Exception as e: + logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True) + return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}" + + +# https://console.groq.com/docs/quickstart +def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): + logging.debug("Groq: Summarization process starting...") + try: + logging.debug("Groq: Loading and validating configurations") + loaded_config_data = load_and_log_configs() + if loaded_config_data is None: + logging.error("Failed to load configuration data") + groq_api_key = None + else: + # Prioritize the API key passed as a parameter + if api_key and api_key.strip(): + groq_api_key = api_key + logging.info("Groq: Using API key provided as parameter") + else: + # If no parameter is provided, use the key from the config + groq_api_key = loaded_config_data['api_keys'].get('groq') + if groq_api_key: + logging.info("Groq: Using API key from config file") + else: + logging.warning("Groq: No API key found in config file") + + # Final check to ensure we have a valid API key + if not groq_api_key or not groq_api_key.strip(): + logging.error("Anthropic: No valid API key available") + # You might want to raise an exception here or handle this case as appropriate for your application + # For example: raise ValueError("No valid Anthropic API key available") + + logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}") + + # Transcript data handling & Validation + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Groq: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Groq: Using provided string data for summarization") + data = input_data + + # DEBUG - Debug logging to identify sent data + logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)") + logging.debug(f"Groq: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Groq: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Groq: Invalid input data format") + + # Set the model to be used + groq_model = loaded_config_data['models']['groq'] + + if temp is None: + temp = 0.2 + temp = float(temp) + if system_message is None: + system_message = "You are a helpful AI assistant who does whatever the user requests." + + headers = { + 'Authorization': f'Bearer {groq_api_key}', + 'Content-Type': 'application/json' + } + + groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + logging.debug("groq: Prompt being sent is {groq_prompt}") + + data = { + "messages": [ + { + "role": "system", + "content": system_message, + }, + { + "role": "user", + "content": groq_prompt, + } + ], + "model": groq_model, + "temperature": temp + } + + logging.debug("groq: Submitting request to API endpoint") + print("groq: Submitting request to API endpoint") + response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) + + response_data = response.json() + logging.debug(f"Full API response data: {response_data}") + + if response.status_code == 200: + logging.debug(response_data) + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("groq: Chat request successful") + print("Groq: Chat request successful.") + return summary + else: + logging.error("Groq(chat): Expected data not found in API response.") + return "Groq(chat): Expected data not found in API response." + else: + logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") + return f"groq: API request failed: {response.text}" + + except Exception as e: + logging.error("groq: Error in processing: %s", str(e)) + return f"groq: Error occurred while processing summary with groq: {str(e)}" + + +def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): + import requests + import json + global openrouter_model, openrouter_api_key + try: + logging.debug("OpenRouter: Loading and validating configurations") + loaded_config_data = load_and_log_configs() + if loaded_config_data is None: + logging.error("Failed to load configuration data") + openrouter_api_key = None + else: + # Prioritize the API key passed as a parameter + if api_key and api_key.strip(): + openrouter_api_key = api_key + logging.info("OpenRouter: Using API key provided as parameter") + else: + # If no parameter is provided, use the key from the config + openrouter_api_key = loaded_config_data['api_keys'].get('openrouter') + if openrouter_api_key: + logging.info("OpenRouter: Using API key from config file") + else: + logging.warning("OpenRouter: No API key found in config file") + + # Model Selection validation + logging.debug("OpenRouter: Validating model selection") + loaded_config_data = load_and_log_configs() + openrouter_model = loaded_config_data['models']['openrouter'] + logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}") + + # Final check to ensure we have a valid API key + if not openrouter_api_key or not openrouter_api_key.strip(): + logging.error("OpenRouter: No valid API key available") + raise ValueError("No valid Anthropic API key available") + except Exception as e: + logging.error("OpenRouter: Error in processing: %s", str(e)) + return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}" + + logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}") + + logging.debug(f"OpenRouter: Using Model: {openrouter_model}") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("OpenRouter: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("OpenRouter: Using provided string data for summarization") + data = input_data + + # DEBUG - Debug logging to identify sent data + logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)") + logging.debug(f"OpenRouter: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("OpenRouter: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("OpenRouter: Invalid input data format") + + openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}" + logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}") + + if temp is None: + temp = 0.1 + temp = float(temp) + if system_message is None: + system_message = "You are a helpful AI assistant who does whatever the user requests." + + try: + logging.debug("OpenRouter: Submitting request to API endpoint") + print("OpenRouter: Submitting request to API endpoint") + response = requests.post( + url="https://openrouter.ai/api/v1/chat/completions", + headers={ + "Authorization": f"Bearer {openrouter_api_key}", + }, + data=json.dumps({ + "model": openrouter_model, + "messages": [ + {"role": "system", "content": system_message}, + {"role": "user", "content": openrouter_prompt} + ], + "temperature": temp + }) + ) + + response_data = response.json() + logging.debug("Full API Response Data: %s", response_data) + + if response.status_code == 200: + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("openrouter: Chat request successful") + print("openrouter: Chat request successful.") + return summary + else: + logging.error("openrouter: Expected data not found in API response.") + return "openrouter: Expected data not found in API response." + else: + logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") + return f"openrouter: API request failed: {response.text}" + except Exception as e: + logging.error("openrouter: Error in processing: %s", str(e)) + return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}" + + +# FIXME: This function is not yet implemented properly +def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None): + loaded_config_data = load_and_log_configs() + logging.debug(f"huggingface Chat: Chat request process starting...") + try: + # API key validation + if not api_key or api_key.strip() == "": + logging.info("HuggingFace Chat: API key not provided as parameter") + logging.info("HuggingFace Chat: Attempting to use API key from config file") + + huggingface_api_key = loaded_config_data['api_keys'].get('huggingface') + logging.debug(f"HuggingFace Chat: API key from config: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}") + + if not huggingface_api_key: + huggingface_api_key = os.getenv('HF_TOKEN') + if huggingface_api_key is None or huggingface_api_key.strip() == "": + logging.error("HuggingFace Chat: API key not found or is empty") + return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty" + if huggingface_api_key: + logging.info("HuggingFace Chat: Using API key from config file") + headers = { + "Authorization": f"Bearer {huggingface_api_key}" + } + + # Setup model + huggingface_model = loaded_config_data['models']['huggingface'] + + API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions" + if temp is None: + temp = 1.0 + temp = float(temp) + huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}" + logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}") + data = { + "model": f"{huggingface_model}", + "messages": [{"role": "user", "content": f"{huggingface_prompt}"}], + "max_tokens": 4096, + "stream": False, + "temperature": temp + } + + logging.debug("HuggingFace Chat: Submitting request...") + response = requests.post(API_URL, headers=headers, json=data) + logging.debug(f"Full API response data: {response.text}") + + if response.status_code == 200: + response_json = response.json() + if "choices" in response_json and len(response_json["choices"]) > 0: + generated_text = response_json["choices"][0]["message"]["content"] + logging.debug("HuggingFace Chat: Chat request successful") + print("HuggingFace Chat: Chat request successful.") + return generated_text.strip() + else: + logging.error("HuggingFace Chat: No generated text in the response") + return "HuggingFace Chat: No generated text in the response" + else: + logging.error( + f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}") + return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}" + except Exception as e: + logging.error(f"HuggingFace Chat: Error in processing: {str(e)}") + print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}") + return None + + +def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5): + """ + Interacts with the DeepSeek API to generate summaries based on input data. + + Parameters: + api_key (str): DeepSeek API key. If not provided, the key from the config is used. + input_data (str or list): The data to summarize. Can be a string or a list of segments. + custom_prompt_arg (str): Custom prompt to append to the input data. + temp (float, optional): Temperature setting for the model. Defaults to 0.1. + system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message. + max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3. + retry_delay (int, optional): Delay between retries in seconds. Defaults to 5. + + Returns: + str: The summary generated by DeepSeek or an error message. + """ + logging.debug("DeepSeek: Summarization process starting...") + try: + logging.debug("DeepSeek: Loading and validating configurations") + loaded_config_data = load_and_log_configs() + if loaded_config_data is None: + logging.error("DeepSeek: Failed to load configuration data") + return "DeepSeek: Failed to load configuration data." + + # Prioritize the API key passed as a parameter + if api_key and api_key.strip(): + deepseek_api_key = api_key.strip() + logging.info("DeepSeek: Using API key provided as parameter") + else: + # If no parameter is provided, use the key from the config + deepseek_api_key = loaded_config_data['api_keys'].get('deepseek') + if deepseek_api_key and deepseek_api_key.strip(): + deepseek_api_key = deepseek_api_key.strip() + logging.info("DeepSeek: Using API key from config file") + else: + logging.error("DeepSeek: No valid API key available") + return "DeepSeek: API Key Not Provided/Found in Config file or is empty" + + logging.debug("DeepSeek: Using API Key") + + # Input data handling + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("DeepSeek: Loading JSON data for summarization") + with open(input_data, 'r', encoding='utf-8') as file: + try: + data = json.load(file) + except json.JSONDecodeError as e: + logging.error(f"DeepSeek: JSON decoding failed: {str(e)}") + return f"DeepSeek: Invalid JSON file. Error: {str(e)}" + else: + logging.debug("DeepSeek: Using provided string data for summarization") + data = input_data + + # DEBUG - Debug logging to identify sent data + if isinstance(data, str): + snipped_data = data[:500] + "..." if len(data) > 500 else data + logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}") + elif isinstance(data, list): + snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2) + logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}") + else: + logging.debug(f"DeepSeek: Loaded data: {data}") + + logging.debug(f"DeepSeek: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("DeepSeek: Summary already exists in the loaded data") + return data['summary'] + + # Text extraction + if isinstance(data, list): + segments = data + try: + text = extract_text_from_segments(segments) + logging.debug("DeepSeek: Extracted text from segments") + except Exception as e: + logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}") + return f"DeepSeek: Error extracting text from segments: {str(e)}" + elif isinstance(data, str): + text = data + logging.debug("DeepSeek: Using string data directly") + else: + raise ValueError("DeepSeek: Invalid input data format") + + # Retrieve the model from config if not provided + deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat") + logging.debug(f"DeepSeek: Using model: {deepseek_model}") + + # Ensure temperature is a float within acceptable range + try: + temp = float(temp) + if not (0.0 <= temp <= 1.0): + logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1") + temp = 0.1 + except (ValueError, TypeError): + logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1") + temp = 0.1 + + # Set default system prompt if not provided + if system_message is not None: + logging.debug("DeepSeek: Using provided system prompt") + else: + system_message = "You are a helpful AI assistant who does whatever the user requests." + logging.debug("DeepSeek: Using default system prompt") + + headers = { + 'Authorization': f'Bearer {deepseek_api_key}', + 'Content-Type': 'application/json' + } + + logging.debug("DeepSeek: Preparing data and prompt for submittal") + deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}" + payload = { + "model": deepseek_model, + "messages": [ + {"role": "system", "content": system_message}, + {"role": "user", "content": deepseek_prompt} + ], + "stream": False, + "temperature": temp + } + + logging.debug("DeepSeek: Posting request to API") + for attempt in range(1, max_retries + 1): + try: + response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30) + logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}") + + if response.status_code == 200: + response_data = response.json() + logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}") + + # Adjust parsing based on actual API response structure + if 'choices' in response_data: + if len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("DeepSeek: Chat request successful") + return summary + else: + logging.error("DeepSeek: 'choices' key is empty in response") + else: + logging.error("DeepSeek: 'choices' key missing in response") + return "DeepSeek: Unexpected response format from API." + elif 500 <= response.status_code < 600: + logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") + else: + logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}") + return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}" + + except requests.Timeout: + logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") + except requests.RequestException as e: + logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") + + if attempt < max_retries: + time.sleep(retry_delay) + else: + logging.error("DeepSeek: Max retries reached. Failed to get a successful response.") + return "DeepSeek: Failed to get a successful response from API after multiple attempts." + + except Exception as e: + logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True) + return f"DeepSeek: Error occurred while processing chat request: {str(e)}" + + + + +def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): + logging.debug("Mistral: Chat request made") + try: + logging.debug("Mistral: Loading and validating configurations") + loaded_config_data = load_and_log_configs() + if loaded_config_data is None: + logging.error("Failed to load configuration data") + mistral_api_key = None + else: + # Prioritize the API key passed as a parameter + if api_key and api_key.strip(): + mistral_api_key = api_key + logging.info("Mistral: Using API key provided as parameter") + else: + # If no parameter is provided, use the key from the config + mistral_api_key = loaded_config_data['api_keys'].get('mistral') + if mistral_api_key: + logging.info("Mistral: Using API key from config file") + else: + logging.warning("Mistral: No API key found in config file") + + # Final check to ensure we have a valid API key + if not mistral_api_key or not mistral_api_key.strip(): + logging.error("Mistral: No valid API key available") + return "Mistral: No valid API key available" + + logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}") + + logging.debug("Mistral: Using provided string data") + data = input_data + + # Text extraction + if isinstance(input_data, list): + text = extract_text_from_segments(input_data) + elif isinstance(input_data, str): + text = input_data + else: + raise ValueError("Mistral: Invalid input data format") + + mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest") + + temp = float(temp) if temp is not None else 0.2 + if system_message is None: + system_message = "You are a helpful AI assistant who does whatever the user requests." + + headers = { + 'Authorization': f'Bearer {mistral_api_key}', + 'Content-Type': 'application/json' + } + + logging.debug( + f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}") + logging.debug("Mistral: Preparing data + prompt for submittal") + mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} " + data = { + "model": mistral_model, + "messages": [ + {"role": "system", + "content": system_message}, + {"role": "user", + "content": mistral_prompt} + ], + "temperature": temp, + "top_p": 1, + "max_tokens": 4096, + "stream": False, + "safe_prompt": False + } + + logging.debug("Mistral: Posting request") + response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data) + logging.debug(f"Full API response data: {response}") + if response.status_code == 200: + response_data = response.json() + logging.debug(response_data) + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("Mistral: request successful") + return summary + else: + logging.warning("Mistral: Chat response not found in the response data") + return "Mistral: Chat response not available" + else: + logging.error(f"Mistral: Chat request failed with status code {response.status_code}") + logging.error(f"Mistral: Error response: {response.text}") + return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}" + except Exception as e: + logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True) + return f"Mistral: Error occurred while processing Chat: {str(e)}" + + + +# Stashed in here since OpenAI usage.... #FIXME +# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. +# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None): +# loaded_config_data = load_and_log_configs() +# llm_model = loaded_config_data['models']['vllm'] +# # API key validation +# if api_key is None: +# logging.info("vLLM: API key not provided as parameter") +# logging.info("vLLM: Attempting to use API key from config file") +# api_key = loaded_config_data['api_keys']['llama'] +# +# if api_key is None or api_key.strip() == "": +# logging.info("vLLM: API key not found or is empty") +# vllm_client = OpenAI( +# base_url=vllm_api_url, +# api_key=custom_prompt_input +# ) +# +# if isinstance(input_data, str) and os.path.isfile(input_data): +# logging.debug("vLLM: Loading json data for summarization") +# with open(input_data, 'r') as file: +# data = json.load(file) +# else: +# logging.debug("vLLM: Using provided string data for summarization") +# data = input_data +# +# logging.debug(f"vLLM: Loaded data: {data}") +# logging.debug(f"vLLM: Type of data: {type(data)}") +# +# if isinstance(data, dict) and 'summary' in data: +# # If the loaded data is a dictionary and already contains a summary, return it +# logging.debug("vLLM: Summary already exists in the loaded data") +# return data['summary'] +# +# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization +# if isinstance(data, list): +# segments = data +# text = extract_text_from_segments(segments) +# elif isinstance(data, str): +# text = data +# else: +# raise ValueError("Invalid input data format") +# +# +# custom_prompt = custom_prompt_input +# +# completion = client.chat.completions.create( +# model=llm_model, +# messages=[ +# {"role": "system", "content": f"{system_prompt}"}, +# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} +# ] +# ) +# vllm_summary = completion.choices[0].message.content +# return vllm_summary + + + +# +# ####################################################################################################################### \ No newline at end of file