Spaces:
Running
Running
Update App_Function_Libraries/RAG/Embeddings_Create.py
Browse files
App_Function_Libraries/RAG/Embeddings_Create.py
CHANGED
@@ -1,167 +1,167 @@
|
|
1 |
-
# Embeddings_Create.py
|
2 |
-
# Description: Functions for Creating and managing Embeddings in ChromaDB with LLama.cpp/OpenAI/Transformers
|
3 |
-
#
|
4 |
-
# Imports:
|
5 |
-
import logging
|
6 |
-
from typing import List, Dict, Any
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
#
|
10 |
-
# 3rd-Party Imports:
|
11 |
-
import requests
|
12 |
-
from transformers import AutoTokenizer, AutoModel
|
13 |
-
import torch
|
14 |
-
#
|
15 |
-
# Local Imports:
|
16 |
-
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
17 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize
|
18 |
-
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
19 |
-
from App_Function_Libraries.Chunk_Lib import chunk_options, improved_chunking_process
|
20 |
-
#
|
21 |
-
#
|
22 |
-
#######################################################################################################################
|
23 |
-
#
|
24 |
-
# Functions:
|
25 |
-
|
26 |
-
# FIXME - Add all globals to summarize.py
|
27 |
-
loaded_config = load_comprehensive_config()
|
28 |
-
embedding_provider = loaded_config['Embeddings']['embedding_provider']
|
29 |
-
embedding_model = loaded_config['Embeddings']['embedding_model']
|
30 |
-
embedding_api_url = loaded_config['Embeddings']['embedding_api_url']
|
31 |
-
embedding_api_key = loaded_config['Embeddings']['embedding_api_key']
|
32 |
-
|
33 |
-
# Embedding Chunking Settings
|
34 |
-
chunk_size = loaded_config['Embeddings']['chunk_size']
|
35 |
-
overlap = loaded_config['Embeddings']['overlap']
|
36 |
-
|
37 |
-
|
38 |
-
# FIXME - Add logging
|
39 |
-
|
40 |
-
# FIXME - refactor/setup to use config file & perform chunking
|
41 |
-
def create_embedding(text: str, provider: str, model: str, api_url: str = None, api_key: str = None) -> List[float]:
|
42 |
-
try:
|
43 |
-
if provider == 'openai':
|
44 |
-
embedding = get_openai_embeddings(text, model)
|
45 |
-
elif provider == 'local':
|
46 |
-
embedding = create_local_embedding(text, model, api_url, api_key)
|
47 |
-
elif provider == 'huggingface':
|
48 |
-
embedding = create_huggingface_embedding(text, model)
|
49 |
-
elif provider == 'llamacpp':
|
50 |
-
embedding = create_llamacpp_embedding(text, api_url)
|
51 |
-
else:
|
52 |
-
raise ValueError(f"Unsupported embedding provider: {provider}")
|
53 |
-
|
54 |
-
if isinstance(embedding, np.ndarray):
|
55 |
-
embedding = embedding.tolist()
|
56 |
-
elif isinstance(embedding, torch.Tensor):
|
57 |
-
embedding = embedding.detach().cpu().numpy().tolist()
|
58 |
-
|
59 |
-
return embedding
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
logging.error(f"Error creating embedding: {str(e)}")
|
63 |
-
raise
|
64 |
-
|
65 |
-
|
66 |
-
def create_huggingface_embedding(text: str, model: str) -> List[float]:
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
68 |
-
model = AutoModel.from_pretrained(model)
|
69 |
-
|
70 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
71 |
-
with torch.no_grad():
|
72 |
-
outputs = model(**inputs)
|
73 |
-
|
74 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
75 |
-
return embeddings[0].tolist()
|
76 |
-
|
77 |
-
|
78 |
-
# FIXME
|
79 |
-
def create_stella_embeddings(text: str) -> List[float]:
|
80 |
-
if embedding_provider == 'local':
|
81 |
-
# Load the model and tokenizer
|
82 |
-
tokenizer = AutoTokenizer.from_pretrained("dunzhang/stella_en_400M_v5")
|
83 |
-
model = AutoModel.from_pretrained("dunzhang/stella_en_400M_v5")
|
84 |
-
|
85 |
-
# Tokenize and encode the text
|
86 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
87 |
-
|
88 |
-
# Generate embeddings
|
89 |
-
with torch.no_grad():
|
90 |
-
outputs = model(**inputs)
|
91 |
-
|
92 |
-
# Use the mean of the last hidden state as the sentence embedding
|
93 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
94 |
-
|
95 |
-
return embeddings[0].tolist() # Convert to list for consistency
|
96 |
-
elif embedding_provider == 'openai':
|
97 |
-
return get_openai_embeddings(text, embedding_model)
|
98 |
-
else:
|
99 |
-
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
|
100 |
-
|
101 |
-
|
102 |
-
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
103 |
-
response = requests.post(
|
104 |
-
api_url,
|
105 |
-
json={"input": text}
|
106 |
-
)
|
107 |
-
response.raise_for_status()
|
108 |
-
return response.json()['embedding']
|
109 |
-
|
110 |
-
|
111 |
-
def create_local_embedding(text: str, model: str, api_url: str, api_key: str) -> List[float]:
|
112 |
-
response = requests.post(
|
113 |
-
api_url,
|
114 |
-
json={"text": text, "model": model},
|
115 |
-
headers={"Authorization": f"Bearer {api_key}"}
|
116 |
-
)
|
117 |
-
response.raise_for_status()
|
118 |
-
return response.json().get('embedding', None)
|
119 |
-
|
120 |
-
|
121 |
-
def chunk_for_embedding(text: str, file_name: str, api_name, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
122 |
-
options = chunk_options.copy()
|
123 |
-
if custom_chunk_options:
|
124 |
-
options.update(custom_chunk_options)
|
125 |
-
|
126 |
-
|
127 |
-
# FIXME
|
128 |
-
if api_name is not None:
|
129 |
-
# Generate summary of the full document
|
130 |
-
full_summary = summarize(text, None, api_name, None, None, None)
|
131 |
-
else:
|
132 |
-
full_summary = "Full document summary not available."
|
133 |
-
|
134 |
-
chunks = improved_chunking_process(text, options)
|
135 |
-
total_chunks = len(chunks)
|
136 |
-
|
137 |
-
chunked_text_with_headers = []
|
138 |
-
for i, chunk in enumerate(chunks, 1):
|
139 |
-
chunk_text = chunk['text']
|
140 |
-
chunk_position = determine_chunk_position(chunk['metadata']['relative_position'])
|
141 |
-
|
142 |
-
chunk_header = f"""
|
143 |
-
Original Document: {file_name}
|
144 |
-
Full Document Summary: {full_summary}
|
145 |
-
Chunk: {i} of {total_chunks}
|
146 |
-
Position: {chunk_position}
|
147 |
-
|
148 |
-
--- Chunk Content ---
|
149 |
-
"""
|
150 |
-
|
151 |
-
full_chunk_text = chunk_header + chunk_text
|
152 |
-
chunk['text'] = full_chunk_text
|
153 |
-
chunk['metadata']['file_name'] = file_name
|
154 |
-
chunked_text_with_headers.append(chunk)
|
155 |
-
|
156 |
-
return chunked_text_with_headers
|
157 |
-
|
158 |
-
|
159 |
-
def create_openai_embedding(text: str, model: str) -> List[float]:
|
160 |
-
embedding = get_openai_embeddings(text, model)
|
161 |
-
return embedding
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
#
|
166 |
-
# End of File.
|
167 |
-
#######################################################################################################################
|
|
|
1 |
+
# Embeddings_Create.py
|
2 |
+
# Description: Functions for Creating and managing Embeddings in ChromaDB with LLama.cpp/OpenAI/Transformers
|
3 |
+
#
|
4 |
+
# Imports:
|
5 |
+
import logging
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
#
|
10 |
+
# 3rd-Party Imports:
|
11 |
+
import requests
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
import torch
|
14 |
+
#
|
15 |
+
# Local Imports:
|
16 |
+
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
17 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize
|
18 |
+
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
19 |
+
from App_Function_Libraries.Chunk_Lib import chunk_options, improved_chunking_process#, determine_chunk_position
|
20 |
+
#
|
21 |
+
#
|
22 |
+
#######################################################################################################################
|
23 |
+
#
|
24 |
+
# Functions:
|
25 |
+
|
26 |
+
# FIXME - Add all globals to summarize.py
|
27 |
+
loaded_config = load_comprehensive_config()
|
28 |
+
embedding_provider = loaded_config['Embeddings']['embedding_provider']
|
29 |
+
embedding_model = loaded_config['Embeddings']['embedding_model']
|
30 |
+
embedding_api_url = loaded_config['Embeddings']['embedding_api_url']
|
31 |
+
embedding_api_key = loaded_config['Embeddings']['embedding_api_key']
|
32 |
+
|
33 |
+
# Embedding Chunking Settings
|
34 |
+
chunk_size = loaded_config['Embeddings']['chunk_size']
|
35 |
+
overlap = loaded_config['Embeddings']['overlap']
|
36 |
+
|
37 |
+
|
38 |
+
# FIXME - Add logging
|
39 |
+
|
40 |
+
# FIXME - refactor/setup to use config file & perform chunking
|
41 |
+
def create_embedding(text: str, provider: str, model: str, api_url: str = None, api_key: str = None) -> List[float]:
|
42 |
+
try:
|
43 |
+
if provider == 'openai':
|
44 |
+
embedding = get_openai_embeddings(text, model)
|
45 |
+
elif provider == 'local':
|
46 |
+
embedding = create_local_embedding(text, model, api_url, api_key)
|
47 |
+
elif provider == 'huggingface':
|
48 |
+
embedding = create_huggingface_embedding(text, model)
|
49 |
+
elif provider == 'llamacpp':
|
50 |
+
embedding = create_llamacpp_embedding(text, api_url)
|
51 |
+
else:
|
52 |
+
raise ValueError(f"Unsupported embedding provider: {provider}")
|
53 |
+
|
54 |
+
if isinstance(embedding, np.ndarray):
|
55 |
+
embedding = embedding.tolist()
|
56 |
+
elif isinstance(embedding, torch.Tensor):
|
57 |
+
embedding = embedding.detach().cpu().numpy().tolist()
|
58 |
+
|
59 |
+
return embedding
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
logging.error(f"Error creating embedding: {str(e)}")
|
63 |
+
raise
|
64 |
+
|
65 |
+
|
66 |
+
def create_huggingface_embedding(text: str, model: str) -> List[float]:
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
68 |
+
model = AutoModel.from_pretrained(model)
|
69 |
+
|
70 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(**inputs)
|
73 |
+
|
74 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
75 |
+
return embeddings[0].tolist()
|
76 |
+
|
77 |
+
|
78 |
+
# FIXME
|
79 |
+
def create_stella_embeddings(text: str) -> List[float]:
|
80 |
+
if embedding_provider == 'local':
|
81 |
+
# Load the model and tokenizer
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained("dunzhang/stella_en_400M_v5")
|
83 |
+
model = AutoModel.from_pretrained("dunzhang/stella_en_400M_v5")
|
84 |
+
|
85 |
+
# Tokenize and encode the text
|
86 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
87 |
+
|
88 |
+
# Generate embeddings
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model(**inputs)
|
91 |
+
|
92 |
+
# Use the mean of the last hidden state as the sentence embedding
|
93 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
94 |
+
|
95 |
+
return embeddings[0].tolist() # Convert to list for consistency
|
96 |
+
elif embedding_provider == 'openai':
|
97 |
+
return get_openai_embeddings(text, embedding_model)
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
|
100 |
+
|
101 |
+
|
102 |
+
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
103 |
+
response = requests.post(
|
104 |
+
api_url,
|
105 |
+
json={"input": text}
|
106 |
+
)
|
107 |
+
response.raise_for_status()
|
108 |
+
return response.json()['embedding']
|
109 |
+
|
110 |
+
|
111 |
+
def create_local_embedding(text: str, model: str, api_url: str, api_key: str) -> List[float]:
|
112 |
+
response = requests.post(
|
113 |
+
api_url,
|
114 |
+
json={"text": text, "model": model},
|
115 |
+
headers={"Authorization": f"Bearer {api_key}"}
|
116 |
+
)
|
117 |
+
response.raise_for_status()
|
118 |
+
return response.json().get('embedding', None)
|
119 |
+
|
120 |
+
|
121 |
+
def chunk_for_embedding(text: str, file_name: str, api_name, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
122 |
+
options = chunk_options.copy()
|
123 |
+
if custom_chunk_options:
|
124 |
+
options.update(custom_chunk_options)
|
125 |
+
|
126 |
+
|
127 |
+
# FIXME
|
128 |
+
if api_name is not None:
|
129 |
+
# Generate summary of the full document
|
130 |
+
full_summary = summarize(text, None, api_name, None, None, None)
|
131 |
+
else:
|
132 |
+
full_summary = "Full document summary not available."
|
133 |
+
|
134 |
+
chunks = improved_chunking_process(text, options)
|
135 |
+
total_chunks = len(chunks)
|
136 |
+
|
137 |
+
chunked_text_with_headers = []
|
138 |
+
for i, chunk in enumerate(chunks, 1):
|
139 |
+
chunk_text = chunk['text']
|
140 |
+
chunk_position = 1#DIRTY HACK #determine_chunk_position(chunk['metadata']['relative_position'])
|
141 |
+
|
142 |
+
chunk_header = f"""
|
143 |
+
Original Document: {file_name}
|
144 |
+
Full Document Summary: {full_summary}
|
145 |
+
Chunk: {i} of {total_chunks}
|
146 |
+
Position: {chunk_position}
|
147 |
+
|
148 |
+
--- Chunk Content ---
|
149 |
+
"""
|
150 |
+
|
151 |
+
full_chunk_text = chunk_header + chunk_text
|
152 |
+
chunk['text'] = full_chunk_text
|
153 |
+
chunk['metadata']['file_name'] = file_name
|
154 |
+
chunked_text_with_headers.append(chunk)
|
155 |
+
|
156 |
+
return chunked_text_with_headers
|
157 |
+
|
158 |
+
|
159 |
+
def create_openai_embedding(text: str, model: str) -> List[float]:
|
160 |
+
embedding = get_openai_embeddings(text, model)
|
161 |
+
return embedding
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
#
|
166 |
+
# End of File.
|
167 |
+
#######################################################################################################################
|