Spaces:
Build error
Build error
File size: 18,032 Bytes
e0ef1bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import json
import gradio as gr
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import requests
from helpers import make_header, upload_file, request_transcript, make_polling_endpoint, wait_for_completion, \
make_html_from_topics, make_paras_string, create_highlighted_list, make_summary, \
make_sentiment_output, make_entity_dict, make_entity_html, make_true_dict, make_final_json, make_content_safety_fig
from helpers import transcription_options_headers, audio_intelligence_headers, language_headers
def change_audio_source(radio, plot, file_data, mic_data):
"""When the audio source radio selector is changed, update the wave plot and change the audio selector accordingly"""
# Empty plot
plot.update_traces(go.Line(y=[]))
# Update plot with appropriate data and change visibility audio components
if radio == "Audio File":
sample_rate, audio_data = file_data
plot.update_traces(go.Line(y=audio_data, x=np.arange(len(audio_data)) / sample_rate))
return [gr.Audio.update(visible=True),
gr.Audio.update(visible=False),
plot,
plot]
elif radio == "Record Audio":
sample_rate, audio_data = mic_data
plot.update_traces(go.Line(y=audio_data, x=np.arange(len(audio_data)) / sample_rate))
return [gr.Audio.update(visible=False),
gr.Audio.update(visible=True),
plot,
plot]
def plot_data(audio_data, plot):
"""Updates plot and appropriate state variable when audio is uploaded/recorded or deleted"""
# If the current audio file is deleted
if audio_data is None:
# Replace the state variable for the audio source with placeholder values
sample_rate, audio_data = [0, np.array([])]
# Update the plot to be empty
plot.update_traces(go.Line(y=[]))
# If new audio is uploaded/recorded
else:
# Replace the current state variable with new
sample_rate, audio_data = audio_data
# Plot the new data
plot.update_traces(go.Line(y=audio_data, x=np.arange(len(audio_data)) / sample_rate))
# Update the plot component and data state variable
return [plot, [sample_rate, audio_data], plot]
def set_lang_vis(transcription_options):
"""Sets visibility of language selector/warning when automatic language detection is (de)selected"""
if 'Automatic Language Detection' in transcription_options:
text = w
return [gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=True),
text]
else:
text = ""
return [gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=False),
text]
def option_verif(language, selected_tran_opts, selected_audint_opts):
"""When the language is changed, this function automatically deselects options that are not allowed for that
language."""
not_available_tran, not_available_audint = get_unavailable_opts(language)
current_tran_opts = list(set(selected_tran_opts) - set(not_available_tran))
current_audint_opts = list(set(selected_audint_opts) - set(not_available_audint))
return [current_tran_opts,
current_audint_opts,
current_tran_opts,
current_audint_opts]
# Get tran/audint opts that are not available by language
def get_unavailable_opts(language):
"""Get transcription and audio intelligence options that are unavailable for a given language"""
if language in ['Spanish', 'French', 'German', 'Portuguese']:
not_available_tran = ['Speaker Labels']
not_available_audint = ['PII Redaction', 'Auto Highlights', 'Sentiment Analysis', 'Summarization',
'Entity Detection']
elif language in ['Italian', 'Dutch']:
not_available_tran = ['Speaker Labels']
not_available_audint = ['PII Redaction', 'Auto Highlights', 'Content Moderation', 'Topic Detection',
'Sentiment Analysis', 'Summarization', 'Entity Detection']
elif language in ['Hindi', 'Japanese']:
not_available_tran = ['Speaker Labels']
not_available_audint = ['PII Redaction', 'Auto Highlights', 'Content Moderation', 'Topic Detection',
'Sentiment Analysis', 'Summarization', 'Entity Detection']
else:
not_available_tran = []
not_available_audint = []
return not_available_tran, not_available_audint
# When selecting new tran option, checks to make sure allowed by language and
# then adds to selected_tran_opts and updates
def tran_selected(language, transcription_options):
"""When a transcription option is selected, """
unavailable, _ = get_unavailable_opts(language)
selected_tran_opts = list(set(transcription_options) - set(unavailable))
return [selected_tran_opts, selected_tran_opts]
# When selecting new audint option, checks to make sure allowed by language and
# then adds to selected_audint_opts and updates
def audint_selected(language, audio_intelligence_selector):
"""Deselected"""
_, unavailable = get_unavailable_opts(language)
selected_audint_opts = list(set(audio_intelligence_selector) - set(unavailable))
return [selected_audint_opts, selected_audint_opts]
def create_ouput(r, paras, language, transc_opts=None, audint_opts=None):
"""From a transcript response, return all outputs for audio intelligence"""
if transc_opts is None:
transc_opts = ['Automatic Language Detection', 'Speaker Labels', 'Filter Profanity']
if audint_opts is None:
audint_opts = ['Summarization', 'Auto Highlights', 'Topic Detection', 'Entity Detection',
'Sentiment Analysis', 'PII Redaction', 'Content Moderation']
# DIARIZATION
if "Speaker Labels" in transc_opts:
utts = '\n\n\n'.join([f"Speaker {utt['speaker']}:\n\n" + utt['text'] for utt in r['utterances']])
else:
utts = " NOT ANALYZED"
# HIGHLIGHTS
if 'Auto Highlights' in audint_opts:
highlight_dict = create_highlighted_list(paras, r['auto_highlights_result']['results'])
else:
highlight_dict =[["NOT ANALYZED", 0]]
# SUMMARIZATION'
if 'Summarization' in audint_opts:
chapters = r['chapters']
summary_html = make_summary(chapters)
else:
summary_html = "<p>NOT ANALYZED</p>"
# TOPIC DETECTION
if "Topic Detection" in audint_opts:
topics = r['iab_categories_result']['summary']
topics_html = make_html_from_topics(topics)
else:
topics_html = "<p>NOT ANALYZED</p>"
# SENTIMENT
if "Sentiment Analysis" in audint_opts:
sent_results = r['sentiment_analysis_results']
sent = make_sentiment_output(sent_results)
else:
sent = "<p>NOT ANALYZED</p>"
# ENTITY
if "Entity Detection" in audint_opts:
entities = r['entities']
t = r['text']
d = make_entity_dict(entities, t)
entity_html = make_entity_html(d)
else:
entity_html = "<p>NOT ANALYZED</p>"
# CONTENT SAFETY
if "Content Moderation" in audint_opts:
cont = r['content_safety_labels']['summary']
content_fig = make_content_safety_fig(cont)
else:
content_fig = go.Figure()
return [language, paras, utts, highlight_dict, summary_html, topics_html, sent, entity_html, content_fig]
def submit_to_AAI(api_key,
transcription_options,
audio_intelligence_selector,
language,
radio,
audio_file,
mic_recording):
# Make request header
header = make_header(api_key)
# Map transcription/audio intelligence options to AssemblyAI API request JSON dict
true_dict = make_true_dict(transcription_options, audio_intelligence_selector)
final_json, language = make_final_json(true_dict, language)
final_json = {**true_dict, **final_json}
# Select which audio to use
if radio == "Audio File":
audio_data = audio_file
elif radio == "Record Audio":
audio_data = mic_recording
# Upload the audio
upload_url = upload_file(audio_data, header, is_file=False)
# Request transcript
transcript_response = request_transcript(upload_url, header, **final_json)
# Wait for the transcription to complete
polling_endpoint = make_polling_endpoint(transcript_response)
wait_for_completion(polling_endpoint, header)
# Fetch results JSON
r = requests.get(polling_endpoint, headers=header, json=final_json).json()
# Fetch paragraphs of transcript
transc_id = r['id']
paras = make_paras_string(transc_id, header)
return create_ouput(r, paras, language, transcription_options, audio_intelligence_selector)
def example_output(language):
"""Displays example output"""
with open("../example_data/paras.txt", 'r') as f:
paras = f.read()
with open('../example_data/response.json', 'r') as f:
r = json.load(f)
return create_ouput(r, paras, language)
with open('styles.css', 'r') as f:
css = f.read()
with gr.Blocks(css=css) as demo:
'''
gr.HTML("<script>"
"window.addEventListener('load', function () {"
"gradioURL = window.location.href"
"if (!gradioURL.endsWith('?__theme=light')) {"
"window.location.replace(gradioURL + '?__theme=light');"
"}"
"});"
"</script>")
'''
# Load image
gr.HTML('<a href="https://www.assemblyai.com/"><img src="file/images/logo.png" class="logo"></a>')
# Load descriptions
gr.HTML("<h1 class='title'>Audio Intelligence Dashboard</h1>"
"<br>"
"<p>Check out the [BLOG NAME] blog to learn how to build this dashboard.</p>")
gr.HTML("<h1 class='title'>Directions</h1>"
"<p>To use this dashboard:</p>"
"<ul>"
"<li>1) Paste your AssemblyAI API Key into the box below - you can copy it from <a href=\"https://app.assemblyai.com/signup\">here</a> (or get one for free if you don't already have one)</li>"
"<li>2) Choose an audio source and upload or record audio</li>"
"<li>3) Select the types of analyses you would like to perform on the audio</li>"
"<li>4) Click <i>Submit</i></li>"
"<li>5) View the results at the bottom of the page</li>"
"<ul>"
"<br>"
"<p>You may also click <b>Show Example Output</b> below to see an example without having to enter an API key.")
gr.HTML('<div class="alert alert__warning"><span>'
'Note that this dashboard is not an official AssemblyAI product and is intended for educational purposes.'
'</span></div>')
# API Key title
with gr.Box():
gr.HTML("<p class=\"apikey\">API Key:</p>")
# API key textbox (password-style)
api_key = gr.Textbox(label="", elem_id="pw")
# Gradio states for - plotly Figure object, audio data for file source, and audio data for mic source
plot = gr.State(px.line(labels={'x': 'Time (s)', 'y': ''}))
file_data = gr.State([1, [0]]) # [sample rate, [data]]
mic_data = gr.State([1, [0]]) # [Sample rate, [data]]
# Options that the user wants
selected_tran_opts = gr.State(list(transcription_options_headers.keys()))
selected_audint_opts = gr.State(list(audio_intelligence_headers.keys()))
# Current options = selected options - unavailable options for specified language
current_tran_opts = gr.State([])
current_audint_opts = gr.State([])
# Selector for audio source
radio = gr.Radio(["Audio File", "Record Audio"], label="Audio Source", value="Audio File")
# Audio object for both file and microphone data
with gr.Box():
audio_file = gr.Audio(interactive=True)
mic_recording = gr.Audio(source="microphone", visible=False, interactive=True)
# Audio wave plot
audio_wave = gr.Plot(plot.value)
# Checkbox for transcription options
transcription_options = gr.CheckboxGroup(
choices=list(transcription_options_headers.keys()),
value=list(transcription_options_headers.keys()),
label="Transcription Options",
)
# Warning for using Automatic Language detection
w = "<div class='alert alert__warning'>" \
"<p>Automatic Language Detection not available for Hindi or Japanese. For best results on non-US " \
"English audio, specify the dialect instead of using Automatic Language Detection. " \
"<br>" \
"Some Audio Intelligence features are not available in some languages. See " \
"<a href='https://airtable.com/shr53TWU5reXkAmt2/tblf7O4cffFndmsCH?backgroundColor=green'>here</a> " \
"for more details.</p>" \
"</div>"
auto_lang_detect_warning = gr.HTML(w)
# Checkbox for Audio Intelligence options
audio_intelligence_selector = gr.CheckboxGroup(
choices=list(audio_intelligence_headers.keys()),
value=list(audio_intelligence_headers.keys()),
label='Audio Intelligence Options'
)
# Language selector for manual language selection
language = gr.Dropdown(
choices=list(language_headers.keys()),
value="US English",
label="Language Specification",
visible=False,
)
# Button to submit audio for processing with selected options
submit = gr.Button('Submit')
# Button to submit audio for processing with selected options
example = gr.Button('Show Example Output')
# Results tab group
phl = 10
with gr.Tab('Transcript'):
trans_tab = gr.Textbox(placeholder="Your formatted transcript will appear here ...",
lines=phl,
max_lines=25,
show_label=False)
with gr.Tab('Speaker Labels'):
diarization_tab = gr.Textbox(placeholder="Your diarized transcript will appear here ...",
lines=phl,
max_lines=25,
show_label=False)
with gr.Tab('Auto Highlights'):
highlights_tab = gr.HighlightedText()
with gr.Tab('Summary'):
summary_tab = gr.HTML("<br>" * phl)
with gr.Tab("Detected Topics"):
topics_tab = gr.HTML("<br>" * phl)
with gr.Tab("Sentiment Analysis"):
sentiment_tab = gr.HTML("<br>" * phl)
with gr.Tab("Entity Detection"):
entity_tab = gr.HTML("<br>" * phl)
with gr.Tab("Content Safety"):
content_tab = gr.Plot()
####################################### Functionality ######################################################
# Changing audio source changes Audio input component
radio.change(fn=change_audio_source,
inputs=[
radio,
plot,
file_data,
mic_data],
outputs=[
audio_file,
mic_recording,
audio_wave,
plot])
# Inputting audio updates plot
audio_file.change(fn=plot_data,
inputs=[audio_file, plot],
outputs=[audio_wave, file_data, plot]
)
mic_recording.change(fn=plot_data,
inputs=[mic_recording, plot],
outputs=[audio_wave, mic_data, plot])
# Deselecting Automatic Language Detection shows Language Selector
transcription_options.change(
fn=set_lang_vis,
inputs=transcription_options,
outputs=[language, auto_lang_detect_warning, auto_lang_detect_warning])
# Changing language deselects certain Tran / Audio Intelligence options
language.change(
fn=option_verif,
inputs=[language,
selected_tran_opts,
selected_audint_opts],
outputs=[transcription_options, audio_intelligence_selector, current_tran_opts, current_audint_opts]
)
# Selecting Tran options adds it to selected if language allows it
transcription_options.change(
fn=tran_selected,
inputs=[language, transcription_options],
outputs=[transcription_options, selected_tran_opts, ]
)
# Selecting audio intelligence options adds it to selected if language allows it
audio_intelligence_selector.change(
fn=audint_selected,
inputs=[language, audio_intelligence_selector],
outputs=[audio_intelligence_selector, selected_audint_opts]
)
# Clicking "submit" uploads selected audio to AssemblyAI, performs requested analyses, and displays results
submit.click(fn=submit_to_AAI,
inputs=[api_key,
transcription_options,
audio_intelligence_selector,
language,
radio,
audio_file,
mic_recording],
outputs=[language,
trans_tab,
diarization_tab,
highlights_tab,
summary_tab,
topics_tab,
sentiment_tab,
entity_tab,
content_tab])
# Clicking "Show Example Output" displays example results
example.click(fn=example_output,
inputs=language,
outputs=[language,
trans_tab,
diarization_tab,
highlights_tab,
summary_tab,
topics_tab,
sentiment_tab,
entity_tab,
content_tab])
# Launch the application
demo.launch() # share=True
|