Spaces:
Build error
Build error
import re | |
import requests | |
import time | |
from scipy.io.wavfile import write | |
import io | |
import plotly.express as px | |
upload_endpoint = "https://api.assemblyai.com/v2/upload" | |
transcript_endpoint = "https://api.assemblyai.com/v2/transcript" | |
# Colors for sentiment analysis highlighting | |
green = "background-color: #159609" | |
red = "background-color: #cc0c0c" | |
# Converts Gradio checkboxes to AssemlbyAI header arguments | |
transcription_options_headers = { | |
'Automatic Language Detection': 'language_detection', | |
'Speaker Labels': 'speaker_labels', | |
'Filter Profanity': 'filter_profanity', | |
} | |
# Converts Gradio checkboxes to AssemblyAI header arguments | |
audio_intelligence_headers = { | |
'Summarization': 'auto_chapters', | |
'Auto Highlights': 'auto_highlights', | |
'Topic Detection': 'iab_categories', | |
'Entity Detection': 'entity_detection', | |
'Sentiment Analysis': 'sentiment_analysis', | |
'PII Redaction': 'redact_pii', | |
'Content Moderation': 'content_safety', | |
} | |
# Converts selected language in Gradio to language code for AssemblyAI header argument | |
language_headers = { | |
'Global English': 'en', | |
'US English': 'en_us', | |
'British English': 'en_uk', | |
'Australian English': 'en_au', | |
'Spanish': 'es', | |
'French': 'fr', | |
'German': 'de', | |
'Italian': 'it', | |
'Portuguese': 'pt', | |
'Dutch': 'nl', | |
'Hindi': 'hi', | |
'Japanese': 'jp', | |
} | |
def make_header(api_key): | |
return { | |
'authorization': api_key, | |
'content-type': 'application/json' | |
} | |
def _read_file(filename, chunk_size=5242880): | |
"""Helper for `upload_file()`""" | |
with open(filename, "rb") as f: | |
while True: | |
data = f.read(chunk_size) | |
if not data: | |
break | |
yield data | |
def _read_array(audio, chunk_size=5242880): | |
"""Like _read_file but for array - creates temporary unsaved "file" from sample rate and audio np.array""" | |
sr, aud = audio | |
# Create temporary "file" and write data to it | |
bytes_wav = bytes() | |
temp_file = io.BytesIO(bytes_wav) | |
write(temp_file, sr, aud) | |
while True: | |
data = temp_file.read(chunk_size) | |
if not data: | |
break | |
yield data | |
def upload_file(audio_file, header, is_file=True): | |
"""Uploads a file to AssemblyAI for analysis""" | |
upload_response = requests.post( | |
upload_endpoint, | |
headers=header, | |
data=_read_file(audio_file) if is_file else _read_array(audio_file) | |
) | |
if upload_response.status_code != 200: | |
upload_response.raise_for_status() | |
# Returns {'upload_url': <URL>} | |
return upload_response.json() | |
def request_transcript(upload_url, header, **kwargs): | |
"""Request a transcript/audio analysis from AssemblyAI""" | |
# If input is a dict returned from `upload_file` rather than a raw upload_url string | |
if type(upload_url) is dict: | |
upload_url = upload_url['upload_url'] | |
# Create request | |
transcript_request = { | |
'audio_url': upload_url, | |
**kwargs | |
} | |
# POST request | |
transcript_response = requests.post( | |
transcript_endpoint, | |
json=transcript_request, | |
headers=header | |
) | |
return transcript_response.json() | |
def make_polling_endpoint(transcript_id): | |
"""Create a polling endpoint from a transcript ID to check on the status of the transcript""" | |
# If upload response is input rather than raw upload_url string | |
if type(transcript_id) is dict: | |
transcript_id = transcript_id['id'] | |
polling_endpoint = "https://api.assemblyai.com/v2/transcript/" + transcript_id | |
return polling_endpoint | |
def wait_for_completion(polling_endpoint, header): | |
"""Given a polling endpoint, waits for the transcription/audio analysis to complete""" | |
while True: | |
polling_response = requests.get(polling_endpoint, headers=header) | |
polling_response = polling_response.json() | |
if polling_response['status'] == 'completed': | |
break | |
elif polling_response['status'] == 'error': | |
raise Exception(f"Error: {polling_response['error']}") | |
time.sleep(5) | |
def make_true_dict(transcription_options, audio_intelligence_selector): | |
"""Given transcription / audio intelligence Gradio options, create a dictionary to be used in AssemblyAI request""" | |
# Convert Gradio checkbox names to AssemblyAI API keys | |
aai_tran_keys = [transcription_options_headers[elt] for elt in transcription_options] | |
aai_audint_keys = [audio_intelligence_headers[elt] for elt in audio_intelligence_selector] | |
# For each checked box, set it to true in the JSON used POST request to AssemblyAI | |
aai_tran_dict = {key: 'true' for key in aai_tran_keys} | |
aai_audint_dict = {key: 'true' for key in aai_audint_keys} | |
return {**aai_tran_dict, **aai_audint_dict} | |
def make_final_json(true_dict, language): | |
"""Takes in output of `make_true_dict()` and adds all required other key-value pairs""" | |
# If automatic language detection selected but no language specified, default to US english | |
if 'language_detection' not in true_dict: | |
if language is None: | |
language = "US English" | |
true_dict = {**true_dict, 'language_code': language_headers[language]} | |
# If PII Redaction is enabled, add default redaction policies | |
if 'redact_pii' in true_dict: | |
true_dict = {**true_dict, 'redact_pii_policies': ['drug', 'injury', 'person_name', 'money_amount']} | |
return true_dict, language | |
def _split_on_capital(string): | |
"""Adds spaces between capitalized words of a string via regex. 'HereAreSomeWords' -> 'Here Are Some Words'""" | |
return ' '.join(re.findall("[A-Z][^A-Z]*", string)) | |
def _make_tree(c, ukey=''): | |
''' | |
Given a list whose elements are nested topic lists, generates a JSON-esque dictionary tree of topics and | |
subtopics | |
E.g. the input | |
[ | |
['Education', 'CollegeEducation', 'PostgraduateEducation'], | |
['Education', 'CollegeEducation', 'UndergraduateEducation'] | |
] | |
Would output a dictionary corresponding to a tree with two leaves, 'UndergraduateEducation' and | |
'PostgraduateEducation', which fall under a node 'CollegeEducation' which in turn falls under the node 'Education' | |
:param c: List of topics | |
:param ukey: "Upper key". For recursion - name of upper level key whose value (list) is being recursed on | |
:return: Dictionary that defines a tree structure | |
''' | |
# Create empty dict for current sublist | |
d = dict() | |
# If leaf, return None | |
if c is None and ukey is None: | |
return None | |
elif c is None: | |
return {None: None} | |
else: | |
# For each elt of the input (itself a list), | |
for n, i in enumerate(c): | |
# For topics with sublist e.g. if ['NewsAndPolitics' 'Politics'] and | |
# ['NewsAndPolitics' 'Politics', 'Elections'] are both in list - need way to signify politics itself | |
# included | |
if i is None: | |
d[None] = None | |
# If next subtopic not in dict, add it. If the remaining list empty, make value None | |
elif i[0] not in d.keys(): | |
topic = i.pop(0) | |
d[topic] = None if i == [] else [i] | |
# If subtopic already in dict | |
else: | |
# If the value for this subtopic is only None (i.e. subject itself is a leaf), then append sublist | |
if d[i[0]] is None: | |
d[i[0]] = [None, i[1:]] | |
# If value for this subtopic is a list itself, then append the remaining list | |
else: | |
d[i[0]].append(i[1:]) | |
# Recurse on remaining leaves | |
for key in d: | |
d[key] = _make_tree(d[key], key) | |
return d | |
def _make_html_tree(dic, level=0, HTML=''): | |
"""Generates an HTML tree from an output of _make_tree""" | |
HTML += "<ul>" | |
for key in dic: | |
# Add the topic to HTML, specifying the current level and whether it is a topic | |
if type(dic[key]) == dict: | |
HTML += "<li>" | |
if None in dic[key].keys(): | |
del dic[key][None] | |
HTML += f'<p class="topic-L{level} istopic">{_split_on_capital(key)}</p>' | |
else: | |
HTML += f'<p class="topic-L{level}">{_split_on_capital(key)}</p>' | |
HTML += "</li>" | |
HTML = _make_html_tree(dic[key], level=level + 1, HTML=HTML) | |
else: | |
HTML += "<li>" | |
HTML += f'<p class="topic-L{level} istopic">{_split_on_capital(key)}</p>' | |
HTML += "</li>" | |
HTML += "</ul>" | |
return HTML | |
def _make_html_body(dic): | |
"""Makes an HTML body from an output of _make_tree""" | |
HTML = '<body>' | |
HTML += _make_html_tree(dic) | |
HTML += "</body>" | |
return HTML | |
def _make_html(dic): | |
"""Makes a full HTML document from an output of _make_tree using styles.css styling""" | |
HTML = '<!DOCTYPE html>' \ | |
'<html>' \ | |
'<head>' \ | |
'<title>Another simple example</title>' \ | |
'<link rel="stylesheet" type="text/css" href="styles.css"/>' \ | |
'</head>' | |
HTML += _make_html_body(dic) | |
HTML += "</html>" | |
return HTML | |
# make_html_from_topics(j['iab_categories_result']['summary']) | |
def make_html_from_topics(dic, threshold=0.0): | |
"""Given a topics dictionary from AAI Topic Detection API, generates appropriate corresponding structured HTML. | |
Input is `response.json()['iab_categories_result']['summary']` from GET request on AssemblyAI `v2/transcript` | |
endpoint.""" | |
# Potentially filter some items out | |
cats = [k for k, v in dic.items() if float(v) >= threshold] | |
# Sort remaining topics | |
cats.sort() | |
# Split items into lists | |
cats = [i.split(">") for i in cats] | |
# Make topic tree | |
tree = _make_tree(cats) | |
# Return formatted HTML | |
return _make_html(tree) | |
def make_paras_string(transc_id, header): | |
""" Makes a string by concatenating paragraphs newlines in between. Input is response.json()['paragraphs'] from | |
from AssemblyAI paragraphs endpoint """ | |
endpoint = transcript_endpoint + "/" + transc_id + "/paragraphs" | |
paras = requests.get(endpoint, headers=header).json()['paragraphs'] | |
paras = '\n\n'.join(i['text'] for i in paras) | |
return paras | |
def create_highlighted_list(paragraphs_string, highlights_result, rank=0): | |
"""Outputs auto highlights information in appropriate format for `gr.HighlightedText()`. `highlights_result` is | |
response.json()['auto_highlights_result]['results'] where response from GET request on AssemblyAI v2/transcript | |
endpoint""" | |
# Max and min opacities to highlight to | |
MAX_HIGHLIGHT = 1 # Max allowed = 1 | |
MIN_HIGHLIGHT = 0.25 # Min allowed = 0 | |
# Filter list for everything above the input rank | |
highlights_result = [i for i in highlights_result if i['rank'] >= rank] | |
# Get max/min ranks and find scale/shift we'll need so ranks are mapped to [MIN_HIGHLIGHT, MAX_HIGHLIGHT] | |
max_rank = max([i['rank'] for i in highlights_result]) | |
min_rank = min([i['rank'] for i in highlights_result]) | |
scale = (MAX_HIGHLIGHT - MIN_HIGHLIGHT) / (max_rank - min_rank) | |
shift = (MAX_HIGHLIGHT - max_rank * scale) | |
# Isolate only highlight text and rank | |
highlights_result = [(i['text'], i['rank']) for i in highlights_result] | |
entities = [] | |
for highlight, rank in highlights_result: | |
# For each highlight, find all starting character instances | |
starts = [c.start() for c in re.finditer(highlight, paragraphs_string)] | |
# Create list of locations for this highlight with entity value (highlight opacity) scaled properly | |
e = [{"entity": rank * scale + shift, | |
"start": start, | |
"end": start + len(highlight)} | |
for start in starts] | |
entities += e | |
# Create dictionary | |
highlight_dict = {"text": paragraphs_string, "entities": entities} | |
# Sort entities by start char. A bug in Gradio requires this | |
highlight_dict['entities'] = sorted(highlight_dict['entities'], key=lambda x: x['start']) | |
return highlight_dict | |
def make_summary(chapters): | |
"""Makes HTML for "Summary" `gr.Tab()` tab. Input is `response.json()['chapters']` where response is from GET | |
request to AssemblyAI's v2/transcript endpoint""" | |
html = "<div>" | |
for chapter in chapters: | |
html += "<details>" \ | |
f"<summary><b>{chapter['headline']}</b></summary>" \ | |
f"{chapter['summary']}" \ | |
"</details>" | |
html += "</div>" | |
return html | |
def to_hex(num, max_opacity=128): | |
"""Converts a confidence value in the range [0, 1] to a hex value""" | |
return hex(int(max_opacity * num))[2:] | |
def make_sentiment_output(sentiment_analysis_results): | |
"""Makes HTML output of sentiment analysis info for display with `gr.HTML()`. Input is | |
`response.json()['sentiment_analysis_results']` from GET request on AssemblyAI v2/transcript.""" | |
p = '<p>' | |
for sentiment in sentiment_analysis_results: | |
if sentiment['sentiment'] == 'POSITIVE': | |
p += f'<mark style="{green + to_hex(sentiment["confidence"])}">' + sentiment['text'] + '</mark> ' | |
elif sentiment['sentiment'] == "NEGATIVE": | |
p += f'<mark style="{red + to_hex(sentiment["confidence"])}">' + sentiment['text'] + '</mark> ' | |
else: | |
p += sentiment['text'] + ' ' | |
p += "</p>" | |
return p | |
def make_entity_dict(entities, t, offset=40): | |
"""Creates dictionary that will be used to generate HTML for Entity Detection `gr.Tab()` tab. | |
Inputs are response.json()['entities'] and response.json()['text'] for response of GET request | |
on AssemblyAI v2/transcript endpoint""" | |
len_text = len(t) | |
d = {} | |
for entity in entities: | |
# Find entity in the text | |
s = t.find(entity['text']) | |
if s == -1: | |
p = None | |
else: | |
len_entity = len(entity['text']) | |
# Get entity context (colloquial sense) | |
p = t[max(0, s - offset):min(s + len_entity + offset, len_text)] | |
# Make sure start and end with a full word | |
p = '... ' + ' '.join(p.split(' ')[1:-1]) + ' ...' | |
# Add to dict | |
label = ' '.join(entity['entity_type'].split('_')).title() | |
if label in d: | |
d[label] += [[p, entity['text']]] | |
else: | |
d[label] = [[p, entity['text']]] | |
return d | |
def make_entity_html(d, highlight_color="#FFFF0080"): | |
"""Input is output of `make_entity_dict`. Creates HTML for Entity Detection info""" | |
h = "<ul>" | |
for i in d: | |
h += f"""<li style="color: #6b2bd6; font-size: 20px;">{i}""" | |
h += "<ul>" | |
for sent, ent in d[i]: | |
if sent is None: | |
h += f"""<li style="color: black; font-size: 16px;">[REDACTED]</li>""" | |
else: | |
h += f"""<li style="color: black; font-size: 16px;">{sent.replace(ent, f'<mark style="background-color: {highlight_color}">{ent}</mark>')}</li>""" | |
h += '</ul>' | |
h += '</li>' | |
h += "</ul>" | |
return h | |
def make_content_safety_fig(cont_safety_summary): | |
"""Creates content safety figure from response.json()['content_safety_labels']['summary'] from GET request on | |
AssemblyAI v2/transcript endpoint""" | |
# Create dictionary as demanded by plotly | |
d = {'label': [], 'severity': [], 'color': []} | |
# For each sentitive topic, add the (formatted) name, severity, and plot color | |
for key in cont_safety_summary: | |
d['label'] += [' '.join(key.split('_')).title()] | |
d['severity'] += [cont_safety_summary[key]] | |
d['color'] += ['rgba(107, 43, 214, 1)'] | |
# Create the figure (n.b. repetitive color info but was running into plotly bugs) | |
content_fig = px.bar(d, x='severity', y='label', color='color', color_discrete_map={ | |
'Crime Violence': 'rgba(107, 43, 214, 0.1)', | |
'Alcohol': 'rgba(107, 43, 214, 0.1)', | |
'Accidents': 'rgba(107, 43, 214, 0.1)'}) | |
# Update the content figure plot | |
content_fig.update_layout({'plot_bgcolor': 'rgba(107, 43, 214, 0.1)'}) | |
# Scales axes appropriately | |
content_fig.update_xaxes(range=[0, 1]) | |
return content_fig |