File size: 6,848 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# --------------------------------------------------------
# Python Single Object Tracking Evaluation
# Licensed under The MIT License [see LICENSE for details]
# Written by Fangyi Zhang
# @author [email protected]
# @project https://github.com/StrangerZhang/pysot-toolkit.git
# Revised for SiamMask by foolwood
# --------------------------------------------------------
import numpy as np

from ..utils import calculate_failures, calculate_accuracy, calculate_expected_overlap


class EAOBenchmark:
    """
    Args:
        dataset:
    """
    def __init__(self, dataset, skipping=5, tags=['all']):
        self.dataset = dataset
        self.skipping = skipping
        self.tags = tags
        # NOTE we not use gmm to generate low, high, peak value
        if dataset.name in ['VOT2019']:
            self.low = 46
            self.high = 291
            self.peak = 128
        elif dataset.name in ['VOT2018', 'VOT2017']:
            self.low = 100
            self.high = 356
            self.peak = 160
        elif dataset.name == 'VOT2016':
            self.low = 100  # TODO
            self.high = 356
            self.peak = 160

    def eval(self, eval_trackers=None):
        """
        Args:
            eval_tags: list of tag
            eval_trackers: list of tracker name
        Returns:
            eao: dict of results
        """
        if eval_trackers is None:
            eval_trackers = self.dataset.tracker_names
        if isinstance(eval_trackers, str):
            eval_trackers = [eval_trackers]

        ret = {}
        for tracker_name in eval_trackers:
            eao = self._calculate_eao(tracker_name, self.tags)
            ret[tracker_name] = eao
        return ret

    def show_result(self, result, topk=10):
        """pretty print result
        Args:
            result: returned dict from function eval
        """
        if len(self.tags) == 1:
            tracker_name_len = max((max([len(x) for x in result.keys()])+2), 12)
            header = ("|{:^"+str(tracker_name_len)+"}|{:^10}|").format('Tracker Name', 'EAO')
            bar = '-'*len(header)
            formatter = "|{:^20}|{:^10.3f}|"
            print(bar)
            print(header)
            print(bar)
            tracker_eao = sorted(result.items(), 
                                 key=lambda x: x[1]['all'], 
                                 reverse=True)[:topk]
            for tracker_name, eao in tracker_eao:
                print(formatter.format(tracker_name, eao))
            print(bar)
        else:
            header = "|{:^20}|".format('Tracker Name')
            header += "{:^7}|{:^15}|{:^14}|{:^15}|{:^13}|{:^11}|{:^7}|".format(*self.tags)
            bar = '-'*len(header)
            formatter = "{:^7.3f}|{:^15.3f}|{:^14.3f}|{:^15.3f}|{:^13.3f}|{:^11.3f}|{:^7.3f}|"
            print(bar)
            print(header)
            print(bar)
            sorted_tacker = sorted(result.items(), 
                                   key=lambda x: x[1]['all'],
                                   reverse=True)[:topk]
            sorted_tacker = [x[0] for x in sorted_tacker]
            for tracker_name in sorted_tacker:
                print("|{:^20}|".format(tracker_name)+formatter.format(
                    *[result[tracker_name][x] for x in self.tags]))
            print(bar)

    def _calculate_eao(self, tracker_name, tags):
        all_overlaps = []
        all_failures = []
        video_names = []
        gt_traj_length = []
        for video in self.dataset:
            gt_traj = video.gt_traj
            if tracker_name not in video.pred_trajs:
                tracker_trajs = video.load_tracker(self.dataset.tracker_path, tracker_name, False)
            else:
                tracker_trajs = video.pred_trajs[tracker_name]
            for tracker_traj in tracker_trajs:
                gt_traj_length.append(len(gt_traj))
                video_names.append(video.name)
                overlaps = calculate_accuracy(tracker_traj, gt_traj, bound=(video.width-1, video.height-1))[1]
                failures = calculate_failures(tracker_traj)[1]
                all_overlaps.append(overlaps)
                all_failures.append(failures)
        fragment_num = sum([len(x)+1 for x in all_failures])
        max_len = max([len(x) for x in all_overlaps])
        seq_weight = 1 / len(tracker_trajs)

        eao = {}
        for tag in tags:
            # prepare segments
            fweights = np.ones((fragment_num)) * np.nan
            fragments = np.ones((fragment_num, max_len)) * np.nan
            seg_counter = 0
            for name, traj_len, failures, overlaps in zip(video_names, gt_traj_length,
                    all_failures, all_overlaps):
                if len(failures) > 0:
                    points = [x+self.skipping for x in failures if
                            x+self.skipping <= len(overlaps)]
                    points.insert(0, 0)
                    for i in range(len(points)):
                        if i != len(points) - 1:
                            fragment = np.array(overlaps[points[i]:points[i+1]+1])
                            fragments[seg_counter, :] = 0
                        else:
                            fragment = np.array(overlaps[points[i]:])
                        fragment[np.isnan(fragment)] = 0
                        fragments[seg_counter, :len(fragment)] = fragment
                        if i != len(points) - 1:
                            tag_value = self.dataset[name].select_tag(tag, points[i], points[i+1]+1)
                            w = sum(tag_value) / (points[i+1] - points[i]+1)
                            fweights[seg_counter] = seq_weight * w
                        else:
                            tag_value = self.dataset[name].select_tag(tag, points[i], len(overlaps))
                            w = sum(tag_value) / (traj_len - points[i]+1e-16)
                            fweights[seg_counter] = seq_weight * w
                        seg_counter += 1
                else:
                    # no failure
                    max_idx = min(len(overlaps), max_len)
                    fragments[seg_counter, :max_idx] = overlaps[:max_idx]
                    tag_value = self.dataset[name].select_tag(tag, 0, max_idx)
                    w = sum(tag_value) / max_idx
                    fweights[seg_counter] = seq_weight * w
                    seg_counter += 1

            expected_overlaps = calculate_expected_overlap(fragments, fweights)
            # caculate eao
            weight = np.zeros((len(expected_overlaps)))
            weight[self.low-1:self.high-1+1] = 1
            is_valid = np.logical_not(np.isnan(expected_overlaps))
            eao_ = np.sum(expected_overlaps[is_valid] * weight[is_valid]) / np.sum(weight[is_valid])
            eao[tag] = eao_
        return eao