Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import librosa
|
3 |
+
import librosa.display
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import soundfile as sf
|
7 |
+
import wave
|
8 |
+
import json
|
9 |
+
from vosk import Model, KaldiRecognizer
|
10 |
+
from transformers import pipeline
|
11 |
+
import os
|
12 |
+
from pydub import AudioSegment
|
13 |
+
import noisereduce as nr
|
14 |
+
|
15 |
+
# Load Vosk model
|
16 |
+
MODEL_PATH = "vosk-model-small-en-us-0.15"
|
17 |
+
if not os.path.exists(MODEL_PATH):
|
18 |
+
st.error("Vosk model not found! Please download and extract it.")
|
19 |
+
st.stop()
|
20 |
+
model = Model(MODEL_PATH)
|
21 |
+
|
22 |
+
# Streamlit UI
|
23 |
+
st.title("ποΈ Speech Detection System using Mozilla Common Voice")
|
24 |
+
st.write("Upload an audio file and get real-time speech-to-text, noise filtering, and emotion analysis.")
|
25 |
+
|
26 |
+
uploaded_file = st.file_uploader("Upload an MP3/WAV file", type=["mp3", "wav"])
|
27 |
+
|
28 |
+
if uploaded_file:
|
29 |
+
# Convert MP3 to WAV if needed
|
30 |
+
file_path = f"temp/{uploaded_file.name}"
|
31 |
+
os.makedirs("temp", exist_ok=True)
|
32 |
+
with open(file_path, "wb") as f:
|
33 |
+
f.write(uploaded_file.getbuffer())
|
34 |
+
|
35 |
+
if file_path.endswith(".mp3"):
|
36 |
+
wav_path = file_path.replace(".mp3", ".wav")
|
37 |
+
audio = AudioSegment.from_mp3(file_path)
|
38 |
+
audio.export(wav_path, format="wav")
|
39 |
+
file_path = wav_path
|
40 |
+
|
41 |
+
# Load audio
|
42 |
+
y, sr = librosa.load(file_path, sr=16000)
|
43 |
+
|
44 |
+
# Display waveform
|
45 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
46 |
+
librosa.display.waveshow(y, sr=sr, ax=ax)
|
47 |
+
st.pyplot(fig)
|
48 |
+
|
49 |
+
# Noise Reduction
|
50 |
+
y_denoised = nr.reduce_noise(y=y, sr=sr)
|
51 |
+
denoised_path = file_path.replace(".wav", "_denoised.wav")
|
52 |
+
sf.write(denoised_path, y_denoised, sr)
|
53 |
+
|
54 |
+
# Speech-to-Text using Vosk
|
55 |
+
def transcribe_audio(audio_path):
|
56 |
+
wf = wave.open(audio_path, "rb")
|
57 |
+
rec = KaldiRecognizer(model, wf.getframerate())
|
58 |
+
|
59 |
+
while True:
|
60 |
+
data = wf.readframes(4000)
|
61 |
+
if len(data) == 0:
|
62 |
+
break
|
63 |
+
if rec.AcceptWaveform(data):
|
64 |
+
result = json.loads(rec.Result())
|
65 |
+
return result["text"]
|
66 |
+
|
67 |
+
transcription = transcribe_audio(file_path)
|
68 |
+
st.subheader("π Transcribed Text:")
|
69 |
+
st.write(transcription)
|
70 |
+
|
71 |
+
# Emotion Detection
|
72 |
+
emotion_model = pipeline("audio-classification", model="superb/wav2vec2-large-xlsr-53")
|
73 |
+
emotion_result = emotion_model(file_path)
|
74 |
+
|
75 |
+
st.subheader("π Emotion Analysis:")
|
76 |
+
st.write(emotion_result)
|
77 |
+
|
78 |
+
# Play original and denoised audio
|
79 |
+
st.audio(file_path, format="audio/wav", start_time=0)
|
80 |
+
st.subheader("π Denoised Audio:")
|
81 |
+
st.audio(denoised_path, format="audio/wav", start_time=0)
|