Spaces:
Running
on
Zero
Running
on
Zero
okaris
commited on
Commit
·
1d4b9ba
1
Parent(s):
6a9c64d
Omni-Zero
Browse files- .gitmodules +3 -0
- README.md +11 -1
- demo.py +37 -0
- diffusers +1 -0
- omni_zero.py +159 -0
- pipeline.py +1848 -0
- requirements.txt +12 -0
- utils.py +99 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "diffusers"]
|
2 |
+
path = diffusers
|
3 |
+
url = https://github.com/huggingface/diffusers.git
|
README.md
CHANGED
@@ -1,10 +1,20 @@
|
|
1 |
# Omni-Zero: A diffusion pipeline for zero-shot stylized portrait creation.
|
2 |
## Try our free demo on [StyleOf](https://styleof.com/s/remix-yourself)
|
|
|
3 |
### Single Identity and Style
|
4 |
![Omni-Zero](https://github.com/okaris/omni-zero/assets/1448702/2c51fb77-a810-4c0a-9555-791a294455ca)
|
5 |
-
|
|
|
6 |
![Frame 7-3](https://github.com/okaris/omni-zero/assets/1448702/c5c20961-83bc-47f7-86ed-5948d5590f07)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
### Credits
|
9 |
- Special thanks to [fal.ai](https://fal.ai) for providing compute for the research and hosting
|
10 |
- This project wouldn't be possible without the great work of the [InstantX Team](https://github.com/InstantID)
|
|
|
1 |
# Omni-Zero: A diffusion pipeline for zero-shot stylized portrait creation.
|
2 |
## Try our free demo on [StyleOf](https://styleof.com/s/remix-yourself)
|
3 |
+
|
4 |
### Single Identity and Style
|
5 |
![Omni-Zero](https://github.com/okaris/omni-zero/assets/1448702/2c51fb77-a810-4c0a-9555-791a294455ca)
|
6 |
+
|
7 |
+
### Multiple Identities and Styles (WIP)
|
8 |
![Frame 7-3](https://github.com/okaris/omni-zero/assets/1448702/c5c20961-83bc-47f7-86ed-5948d5590f07)
|
9 |
|
10 |
+
### How to run
|
11 |
+
```
|
12 |
+
git clone --recursive https://github.com/okaris/omni-zero.git
|
13 |
+
cd omni-zero
|
14 |
+
pip install -r requirements.txt
|
15 |
+
python demo.py
|
16 |
+
```
|
17 |
+
|
18 |
### Credits
|
19 |
- Special thanks to [fal.ai](https://fal.ai) for providing compute for the research and hosting
|
20 |
- This project wouldn't be possible without the great work of the [InstantX Team](https://github.com/InstantID)
|
demo.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from omni_zero import OmniZeroSingle
|
2 |
+
|
3 |
+
def main():
|
4 |
+
|
5 |
+
omni_zero = OmniZeroSingle(
|
6 |
+
base_model="frankjoshua/albedobaseXL_v13",
|
7 |
+
)
|
8 |
+
|
9 |
+
base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f"
|
10 |
+
composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f"
|
11 |
+
style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584"
|
12 |
+
identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58"
|
13 |
+
|
14 |
+
images = omni_zero.generate(
|
15 |
+
seed=42,
|
16 |
+
prompt="A person",
|
17 |
+
negative_prompt="blurry, out of focus",
|
18 |
+
guidance_scale=3.0,
|
19 |
+
number_of_images=1,
|
20 |
+
number_of_steps=10,
|
21 |
+
base_image=base_image,
|
22 |
+
base_image_strength=0.15,
|
23 |
+
composition_image=composition_image,
|
24 |
+
composition_image_strength=1.0,
|
25 |
+
style_image=style_image,
|
26 |
+
style_image_strength=1.0,
|
27 |
+
identity_image=identity_image,
|
28 |
+
identity_image_strength=1.0,
|
29 |
+
depth_image=None,
|
30 |
+
depth_image_strength=0.5,
|
31 |
+
)
|
32 |
+
|
33 |
+
for i, image in enumerate(images):
|
34 |
+
image.save(f"oz_output_{i}.jpg")
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|
diffusers
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 0d7c4790235ac00b4524b492bc2a680dcc5cf6b0
|
omni_zero.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
3 |
+
|
4 |
+
import sys
|
5 |
+
sys.path.insert(0, './diffusers/src')
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
+
from diffusers import DPMSolverMultistepScheduler
|
12 |
+
from diffusers.models import ControlNetModel
|
13 |
+
|
14 |
+
from transformers import CLIPVisionModelWithProjection
|
15 |
+
|
16 |
+
from pipeline import OmniZeroPipeline
|
17 |
+
from insightface.app import FaceAnalysis
|
18 |
+
from controlnet_aux import ZoeDetector
|
19 |
+
from utils import draw_kps, load_and_resize_image, align_images
|
20 |
+
|
21 |
+
import cv2
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
class OmniZeroSingle():
|
25 |
+
def __init__(self,
|
26 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
27 |
+
):
|
28 |
+
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
|
29 |
+
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
30 |
+
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
|
31 |
+
|
32 |
+
dtype = torch.float16
|
33 |
+
|
34 |
+
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
35 |
+
"h94/IP-Adapter",
|
36 |
+
subfolder="models/image_encoder",
|
37 |
+
torch_dtype=dtype,
|
38 |
+
).to("cuda")
|
39 |
+
|
40 |
+
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
|
41 |
+
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")
|
42 |
+
|
43 |
+
identitiynet_path = "okaris/face-controlnet-xl"
|
44 |
+
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")
|
45 |
+
|
46 |
+
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
|
47 |
+
|
48 |
+
self.pipeline = OmniZeroPipeline.from_pretrained(
|
49 |
+
base_model,
|
50 |
+
controlnet=[identitynet, zoedepthnet],
|
51 |
+
torch_dtype=dtype,
|
52 |
+
image_encoder=ip_adapter_plus_image_encoder,
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
+
config = self.pipeline.scheduler.config
|
56 |
+
config["timestep_spacing"] = "trailing"
|
57 |
+
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
|
58 |
+
|
59 |
+
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
|
60 |
+
def get_largest_face_embedding_and_kps(self, image, target_image=None):
|
61 |
+
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
62 |
+
if len(face_info) == 0:
|
63 |
+
return None, None
|
64 |
+
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
|
65 |
+
face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
|
66 |
+
if target_image is None:
|
67 |
+
target_image = image
|
68 |
+
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
|
69 |
+
face_kps_image = draw_kps(zeros, largest_face['kps'])
|
70 |
+
return face_embedding, face_kps_image
|
71 |
+
|
72 |
+
def generate(self,
|
73 |
+
seed=42,
|
74 |
+
prompt="A person",
|
75 |
+
negative_prompt="blurry, out of focus",
|
76 |
+
guidance_scale=3.0,
|
77 |
+
number_of_images=1,
|
78 |
+
number_of_steps=10,
|
79 |
+
base_image=None,
|
80 |
+
base_image_strength=0.15,
|
81 |
+
composition_image=None,
|
82 |
+
composition_image_strength=1.0,
|
83 |
+
style_image=None,
|
84 |
+
style_image_strength=1.0,
|
85 |
+
identity_image=None,
|
86 |
+
identity_image_strength=1.0,
|
87 |
+
depth_image=None,
|
88 |
+
depth_image_strength=0.5,
|
89 |
+
):
|
90 |
+
resolution = 1024
|
91 |
+
|
92 |
+
if base_image is not None:
|
93 |
+
base_image = load_and_resize_image(base_image, resolution, resolution)
|
94 |
+
else:
|
95 |
+
if composition_image is not None:
|
96 |
+
base_image = load_and_resize_image(composition_image, resolution, resolution)
|
97 |
+
else:
|
98 |
+
raise ValueError("You must provide a base image or a composition image")
|
99 |
+
|
100 |
+
if depth_image is None:
|
101 |
+
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
|
102 |
+
else:
|
103 |
+
depth_image = load_and_resize_image(depth_image, resolution, resolution)
|
104 |
+
|
105 |
+
base_image, depth_image = align_images(base_image, depth_image)
|
106 |
+
|
107 |
+
if composition_image is not None:
|
108 |
+
composition_image = load_and_resize_image(composition_image, resolution, resolution)
|
109 |
+
else:
|
110 |
+
composition_image = base_image
|
111 |
+
|
112 |
+
if style_image is not None:
|
113 |
+
style_image = load_and_resize_image(style_image, resolution, resolution)
|
114 |
+
else:
|
115 |
+
raise ValueError("You must provide a style image")
|
116 |
+
|
117 |
+
if identity_image is not None:
|
118 |
+
identity_image = load_and_resize_image(identity_image, resolution, resolution)
|
119 |
+
else:
|
120 |
+
raise ValueError("You must provide an identity image")
|
121 |
+
|
122 |
+
face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image)
|
123 |
+
if face_embedding_identity_image is None:
|
124 |
+
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
|
125 |
+
|
126 |
+
face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image)
|
127 |
+
if face_embedding_base_image is not None:
|
128 |
+
target_kps = face_kps_base_image
|
129 |
+
|
130 |
+
self.pipeline.set_ip_adapter_scale([identity_image_strength,
|
131 |
+
{
|
132 |
+
"down": { "block_2": [0.0, 0.0] },
|
133 |
+
"up": { "block_0": [0.0, style_image_strength, 0.0] }
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"down": { "block_2": [0.0, composition_image_strength] },
|
137 |
+
"up": { "block_0": [0.0, 0.0, 0.0] }
|
138 |
+
}
|
139 |
+
])
|
140 |
+
|
141 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
142 |
+
|
143 |
+
images = self.pipeline(
|
144 |
+
prompt=prompt,
|
145 |
+
negative_prompt=negative_prompt,
|
146 |
+
guidance_scale=guidance_scale,
|
147 |
+
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
|
148 |
+
image=base_image,
|
149 |
+
control_image=[target_kps, depth_image],
|
150 |
+
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
|
151 |
+
identity_control_indices=[(0,0)],
|
152 |
+
num_inference_steps=number_of_steps,
|
153 |
+
num_images_per_prompt=number_of_images,
|
154 |
+
strength=(1-base_image_strength),
|
155 |
+
generator=generator,
|
156 |
+
seed=seed,
|
157 |
+
).images
|
158 |
+
|
159 |
+
return images
|
pipeline.py
ADDED
@@ -0,0 +1,1848 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torchsde
|
24 |
+
|
25 |
+
from transformers import (
|
26 |
+
CLIPImageProcessor,
|
27 |
+
CLIPTextModel,
|
28 |
+
CLIPTextModelWithProjection,
|
29 |
+
CLIPTokenizer,
|
30 |
+
CLIPVisionModelWithProjection,
|
31 |
+
)
|
32 |
+
|
33 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
34 |
+
|
35 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
36 |
+
from diffusers.loaders import (
|
37 |
+
FromSingleFileMixin,
|
38 |
+
IPAdapterMixin,
|
39 |
+
StableDiffusionXLLoraLoaderMixin,
|
40 |
+
TextualInversionLoaderMixin,
|
41 |
+
)
|
42 |
+
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
43 |
+
from diffusers.models.attention_processor import (
|
44 |
+
AttnProcessor2_0,
|
45 |
+
LoRAAttnProcessor2_0,
|
46 |
+
LoRAXFormersAttnProcessor,
|
47 |
+
XFormersAttnProcessor,
|
48 |
+
)
|
49 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
50 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
51 |
+
from diffusers.utils import (
|
52 |
+
USE_PEFT_BACKEND,
|
53 |
+
deprecate,
|
54 |
+
logging,
|
55 |
+
replace_example_docstring,
|
56 |
+
scale_lora_layers,
|
57 |
+
unscale_lora_layers,
|
58 |
+
)
|
59 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
60 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
61 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
62 |
+
|
63 |
+
|
64 |
+
if is_invisible_watermark_available():
|
65 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
66 |
+
|
67 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
71 |
+
|
72 |
+
EXAMPLE_DOC_STRING = """
|
73 |
+
Examples:
|
74 |
+
```py
|
75 |
+
>>> # pip install accelerate transformers safetensors diffusers
|
76 |
+
|
77 |
+
>>> import torch
|
78 |
+
>>> import numpy as np
|
79 |
+
>>> from PIL import Image
|
80 |
+
|
81 |
+
>>> from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
82 |
+
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
|
83 |
+
>>> from diffusers.utils import load_image
|
84 |
+
|
85 |
+
|
86 |
+
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
87 |
+
>>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
88 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
89 |
+
... "diffusers/controlnet-depth-sdxl-1.0-small",
|
90 |
+
... variant="fp16",
|
91 |
+
... use_safetensors=True,
|
92 |
+
... torch_dtype=torch.float16,
|
93 |
+
... ).to("cuda")
|
94 |
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
95 |
+
>>> pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
96 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
97 |
+
... controlnet=controlnet,
|
98 |
+
... vae=vae,
|
99 |
+
... variant="fp16",
|
100 |
+
... use_safetensors=True,
|
101 |
+
... torch_dtype=torch.float16,
|
102 |
+
... ).to("cuda")
|
103 |
+
>>> pipe.enable_model_cpu_offload()
|
104 |
+
|
105 |
+
|
106 |
+
>>> def get_depth_map(image):
|
107 |
+
... image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
108 |
+
... with torch.no_grad(), torch.autocast("cuda"):
|
109 |
+
... depth_map = depth_estimator(image).predicted_depth
|
110 |
+
|
111 |
+
... depth_map = torch.nn.functional.interpolate(
|
112 |
+
... depth_map.unsqueeze(1),
|
113 |
+
... size=(1024, 1024),
|
114 |
+
... mode="bicubic",
|
115 |
+
... align_corners=False,
|
116 |
+
... )
|
117 |
+
... depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
118 |
+
... depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
119 |
+
... depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
120 |
+
... image = torch.cat([depth_map] * 3, dim=1)
|
121 |
+
... image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
122 |
+
... image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
123 |
+
... return image
|
124 |
+
|
125 |
+
|
126 |
+
>>> prompt = "A robot, 4k photo"
|
127 |
+
>>> image = load_image(
|
128 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
129 |
+
... "/kandinsky/cat.png"
|
130 |
+
... ).resize((1024, 1024))
|
131 |
+
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
132 |
+
>>> depth_image = get_depth_map(image)
|
133 |
+
|
134 |
+
>>> images = pipe(
|
135 |
+
... prompt,
|
136 |
+
... image=image,
|
137 |
+
... control_image=depth_image,
|
138 |
+
... strength=0.99,
|
139 |
+
... num_inference_steps=50,
|
140 |
+
... controlnet_conditioning_scale=controlnet_conditioning_scale,
|
141 |
+
... ).images
|
142 |
+
>>> images[0].save(f"robot_cat.png")
|
143 |
+
```
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
148 |
+
def retrieve_latents(
|
149 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
150 |
+
):
|
151 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
152 |
+
return encoder_output.latent_dist.sample(generator)
|
153 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
154 |
+
return encoder_output.latent_dist.mode()
|
155 |
+
elif hasattr(encoder_output, "latents"):
|
156 |
+
return encoder_output.latents
|
157 |
+
else:
|
158 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
159 |
+
|
160 |
+
class BatchedBrownianTree:
|
161 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
162 |
+
|
163 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
164 |
+
self.cpu_tree = True
|
165 |
+
if "cpu" in kwargs:
|
166 |
+
self.cpu_tree = kwargs.pop("cpu")
|
167 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
168 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
169 |
+
if seed is None:
|
170 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
171 |
+
self.batched = True
|
172 |
+
try:
|
173 |
+
assert len(seed) == x.shape[0]
|
174 |
+
w0 = w0[0]
|
175 |
+
except TypeError:
|
176 |
+
seed = [seed]
|
177 |
+
self.batched = False
|
178 |
+
if self.cpu_tree:
|
179 |
+
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
180 |
+
else:
|
181 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
def sort(a, b):
|
185 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
186 |
+
|
187 |
+
def __call__(self, t0, t1):
|
188 |
+
t0, t1, sign = self.sort(t0, t1)
|
189 |
+
if self.cpu_tree:
|
190 |
+
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
191 |
+
else:
|
192 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
193 |
+
|
194 |
+
return w if self.batched else w[0]
|
195 |
+
|
196 |
+
|
197 |
+
class BrownianTreeNoiseSampler:
|
198 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
202 |
+
random samples.
|
203 |
+
sigma_min (float): The low end of the valid interval.
|
204 |
+
sigma_max (float): The high end of the valid interval.
|
205 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
206 |
+
supplied instead of a single integer, then the noise sampler will
|
207 |
+
use one BrownianTree per batch item, each with its own seed.
|
208 |
+
transform (callable): A function that maps sigma to the sampler's
|
209 |
+
internal timestep.
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
|
213 |
+
self.transform = transform
|
214 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
215 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
|
216 |
+
|
217 |
+
def __call__(self, sigma, sigma_next):
|
218 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
219 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
220 |
+
|
221 |
+
|
222 |
+
class OmniZeroPipeline(
|
223 |
+
DiffusionPipeline,
|
224 |
+
StableDiffusionMixin,
|
225 |
+
TextualInversionLoaderMixin,
|
226 |
+
StableDiffusionXLLoraLoaderMixin,
|
227 |
+
FromSingleFileMixin,
|
228 |
+
IPAdapterMixin,
|
229 |
+
):
|
230 |
+
r"""
|
231 |
+
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
232 |
+
|
233 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
234 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
235 |
+
|
236 |
+
The pipeline also inherits the following loading methods:
|
237 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
238 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
239 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
240 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
241 |
+
|
242 |
+
Args:
|
243 |
+
vae ([`AutoencoderKL`]):
|
244 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
245 |
+
text_encoder ([`CLIPTextModel`]):
|
246 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
247 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
248 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
249 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
250 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
251 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
252 |
+
specifically the
|
253 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
254 |
+
variant.
|
255 |
+
tokenizer (`CLIPTokenizer`):
|
256 |
+
Tokenizer of class
|
257 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
258 |
+
tokenizer_2 (`CLIPTokenizer`):
|
259 |
+
Second Tokenizer of class
|
260 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
261 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
262 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
263 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
264 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
265 |
+
conditioning.
|
266 |
+
scheduler ([`SchedulerMixin`]):
|
267 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
268 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
269 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
270 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
271 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
272 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
273 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
274 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
275 |
+
add_watermarker (`bool`, *optional*):
|
276 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
277 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
278 |
+
watermarker will be used.
|
279 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
280 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
281 |
+
"""
|
282 |
+
|
283 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
284 |
+
_optional_components = [
|
285 |
+
"tokenizer",
|
286 |
+
"tokenizer_2",
|
287 |
+
"text_encoder",
|
288 |
+
"text_encoder_2",
|
289 |
+
"feature_extractor",
|
290 |
+
"image_encoder",
|
291 |
+
]
|
292 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
293 |
+
|
294 |
+
def __init__(
|
295 |
+
self,
|
296 |
+
vae: AutoencoderKL,
|
297 |
+
text_encoder: CLIPTextModel,
|
298 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
299 |
+
tokenizer: CLIPTokenizer,
|
300 |
+
tokenizer_2: CLIPTokenizer,
|
301 |
+
unet: UNet2DConditionModel,
|
302 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
303 |
+
scheduler: KarrasDiffusionSchedulers,
|
304 |
+
requires_aesthetics_score: bool = False,
|
305 |
+
force_zeros_for_empty_prompt: bool = True,
|
306 |
+
add_watermarker: Optional[bool] = None,
|
307 |
+
feature_extractor: CLIPImageProcessor = None,
|
308 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
309 |
+
):
|
310 |
+
super().__init__()
|
311 |
+
|
312 |
+
if isinstance(controlnet, (list, tuple)):
|
313 |
+
controlnet = MultiControlNetModel(controlnet)
|
314 |
+
|
315 |
+
self.register_modules(
|
316 |
+
vae=vae,
|
317 |
+
text_encoder=text_encoder,
|
318 |
+
text_encoder_2=text_encoder_2,
|
319 |
+
tokenizer=tokenizer,
|
320 |
+
tokenizer_2=tokenizer_2,
|
321 |
+
unet=unet,
|
322 |
+
controlnet=controlnet,
|
323 |
+
scheduler=scheduler,
|
324 |
+
feature_extractor=feature_extractor,
|
325 |
+
image_encoder=image_encoder,
|
326 |
+
)
|
327 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
328 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
329 |
+
self.control_image_processor = VaeImageProcessor(
|
330 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
331 |
+
)
|
332 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
333 |
+
|
334 |
+
if add_watermarker:
|
335 |
+
self.watermark = StableDiffusionXLWatermarker()
|
336 |
+
else:
|
337 |
+
self.watermark = None
|
338 |
+
|
339 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
340 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
341 |
+
|
342 |
+
self.ays_noise_sigmas = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
|
343 |
+
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
|
344 |
+
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
|
345 |
+
|
346 |
+
@staticmethod
|
347 |
+
def _loglinear_interp(t_steps, num_steps):
|
348 |
+
xs = np.linspace(0, 1, len(t_steps))
|
349 |
+
ys = np.log(t_steps[::-1])
|
350 |
+
|
351 |
+
new_xs = np.linspace(0, 1, num_steps)
|
352 |
+
new_ys = np.interp(new_xs, xs, ys)
|
353 |
+
|
354 |
+
return np.exp(new_ys)[::-1].copy()
|
355 |
+
|
356 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
357 |
+
def encode_prompt(
|
358 |
+
self,
|
359 |
+
prompt: str,
|
360 |
+
prompt_2: Optional[str] = None,
|
361 |
+
device: Optional[torch.device] = None,
|
362 |
+
num_images_per_prompt: int = 1,
|
363 |
+
do_classifier_free_guidance: bool = True,
|
364 |
+
negative_prompt: Optional[str] = None,
|
365 |
+
negative_prompt_2: Optional[str] = None,
|
366 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
367 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
368 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
369 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
370 |
+
lora_scale: Optional[float] = None,
|
371 |
+
clip_skip: Optional[int] = None,
|
372 |
+
):
|
373 |
+
r"""
|
374 |
+
Encodes the prompt into text encoder hidden states.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
prompt (`str` or `List[str]`, *optional*):
|
378 |
+
prompt to be encoded
|
379 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
380 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
381 |
+
used in both text-encoders
|
382 |
+
device: (`torch.device`):
|
383 |
+
torch device
|
384 |
+
num_images_per_prompt (`int`):
|
385 |
+
number of images that should be generated per prompt
|
386 |
+
do_classifier_free_guidance (`bool`):
|
387 |
+
whether to use classifier free guidance or not
|
388 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
389 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
390 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
391 |
+
less than `1`).
|
392 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
393 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
394 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
395 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
396 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
397 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
398 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
399 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
400 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
401 |
+
argument.
|
402 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
403 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
404 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
405 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
406 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
407 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
408 |
+
input argument.
|
409 |
+
lora_scale (`float`, *optional*):
|
410 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
411 |
+
clip_skip (`int`, *optional*):
|
412 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
413 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
414 |
+
"""
|
415 |
+
device = device or self._execution_device
|
416 |
+
|
417 |
+
# set lora scale so that monkey patched LoRA
|
418 |
+
# function of text encoder can correctly access it
|
419 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
420 |
+
self._lora_scale = lora_scale
|
421 |
+
|
422 |
+
# dynamically adjust the LoRA scale
|
423 |
+
if self.text_encoder is not None:
|
424 |
+
if not USE_PEFT_BACKEND:
|
425 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
426 |
+
else:
|
427 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
428 |
+
|
429 |
+
if self.text_encoder_2 is not None:
|
430 |
+
if not USE_PEFT_BACKEND:
|
431 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
432 |
+
else:
|
433 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
434 |
+
|
435 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
436 |
+
|
437 |
+
if prompt is not None:
|
438 |
+
batch_size = len(prompt)
|
439 |
+
else:
|
440 |
+
batch_size = prompt_embeds.shape[0]
|
441 |
+
|
442 |
+
# Define tokenizers and text encoders
|
443 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
444 |
+
text_encoders = (
|
445 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
446 |
+
)
|
447 |
+
|
448 |
+
if prompt_embeds is None:
|
449 |
+
prompt_2 = prompt_2 or prompt
|
450 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
451 |
+
|
452 |
+
# textual inversion: process multi-vector tokens if necessary
|
453 |
+
prompt_embeds_list = []
|
454 |
+
prompts = [prompt, prompt_2]
|
455 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
456 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
457 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
458 |
+
|
459 |
+
text_inputs = tokenizer(
|
460 |
+
prompt,
|
461 |
+
padding="max_length",
|
462 |
+
max_length=tokenizer.model_max_length,
|
463 |
+
truncation=True,
|
464 |
+
return_tensors="pt",
|
465 |
+
)
|
466 |
+
|
467 |
+
text_input_ids = text_inputs.input_ids
|
468 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
469 |
+
|
470 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
471 |
+
text_input_ids, untruncated_ids
|
472 |
+
):
|
473 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
474 |
+
logger.warning(
|
475 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
476 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
477 |
+
)
|
478 |
+
|
479 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
480 |
+
|
481 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
482 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
483 |
+
if clip_skip is None:
|
484 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
485 |
+
else:
|
486 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
487 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
488 |
+
|
489 |
+
prompt_embeds_list.append(prompt_embeds)
|
490 |
+
|
491 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
492 |
+
|
493 |
+
# get unconditional embeddings for classifier free guidance
|
494 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
495 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
496 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
497 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
498 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
499 |
+
negative_prompt = negative_prompt or ""
|
500 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
501 |
+
|
502 |
+
# normalize str to list
|
503 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
504 |
+
negative_prompt_2 = (
|
505 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
506 |
+
)
|
507 |
+
|
508 |
+
uncond_tokens: List[str]
|
509 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
510 |
+
raise TypeError(
|
511 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
512 |
+
f" {type(prompt)}."
|
513 |
+
)
|
514 |
+
elif batch_size != len(negative_prompt):
|
515 |
+
raise ValueError(
|
516 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
517 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
518 |
+
" the batch size of `prompt`."
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
522 |
+
|
523 |
+
negative_prompt_embeds_list = []
|
524 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
525 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
526 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
527 |
+
|
528 |
+
max_length = prompt_embeds.shape[1]
|
529 |
+
uncond_input = tokenizer(
|
530 |
+
negative_prompt,
|
531 |
+
padding="max_length",
|
532 |
+
max_length=max_length,
|
533 |
+
truncation=True,
|
534 |
+
return_tensors="pt",
|
535 |
+
)
|
536 |
+
|
537 |
+
negative_prompt_embeds = text_encoder(
|
538 |
+
uncond_input.input_ids.to(device),
|
539 |
+
output_hidden_states=True,
|
540 |
+
)
|
541 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
542 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
543 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
544 |
+
|
545 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
546 |
+
|
547 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
548 |
+
|
549 |
+
if self.text_encoder_2 is not None:
|
550 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
551 |
+
else:
|
552 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
553 |
+
|
554 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
555 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
556 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
557 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
558 |
+
|
559 |
+
if do_classifier_free_guidance:
|
560 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
561 |
+
seq_len = negative_prompt_embeds.shape[1]
|
562 |
+
|
563 |
+
if self.text_encoder_2 is not None:
|
564 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
565 |
+
else:
|
566 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
567 |
+
|
568 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
569 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
570 |
+
|
571 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
572 |
+
bs_embed * num_images_per_prompt, -1
|
573 |
+
)
|
574 |
+
if do_classifier_free_guidance:
|
575 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
576 |
+
bs_embed * num_images_per_prompt, -1
|
577 |
+
)
|
578 |
+
|
579 |
+
if self.text_encoder is not None:
|
580 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
581 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
582 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
583 |
+
|
584 |
+
if self.text_encoder_2 is not None:
|
585 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
586 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
587 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
588 |
+
|
589 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
590 |
+
|
591 |
+
# Copied from ..stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
592 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None, unconditional_noising_factor=1.0):
|
593 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
594 |
+
|
595 |
+
needs_encoding = not isinstance(image, torch.Tensor)
|
596 |
+
if needs_encoding:
|
597 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
598 |
+
|
599 |
+
image = image.to(device=device, dtype=dtype)
|
600 |
+
|
601 |
+
avg_image = torch.mean(image, dim=0, keepdim=True).to(dtype=torch.float32)
|
602 |
+
seed = int(torch.sum(avg_image).item()) % 1000000007
|
603 |
+
torch.manual_seed(seed)
|
604 |
+
additional_noise_for_uncond = torch.rand_like(image) * unconditional_noising_factor
|
605 |
+
|
606 |
+
if output_hidden_states:
|
607 |
+
if needs_encoding:
|
608 |
+
image_encoded = self.image_encoder(image, output_hidden_states=True)
|
609 |
+
image_enc_hidden_states = image_encoded.hidden_states[-2]
|
610 |
+
else:
|
611 |
+
image_enc_hidden_states = image.unsqueeze(0).unsqueeze(0)
|
612 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
613 |
+
|
614 |
+
if needs_encoding:
|
615 |
+
uncond_image_encoded = self.image_encoder(additional_noise_for_uncond, output_hidden_states=True)
|
616 |
+
uncond_image_enc_hidden_states = uncond_image_encoded.hidden_states[-2]
|
617 |
+
else:
|
618 |
+
uncond_image_enc_hidden_states = additional_noise_for_uncond.unsqueeze(0).unsqueeze(0)
|
619 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
620 |
+
num_images_per_prompt, dim=0
|
621 |
+
)
|
622 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
623 |
+
else:
|
624 |
+
if needs_encoding:
|
625 |
+
image_encoded = self.image_encoder(image)
|
626 |
+
image_embeds = image_encoded.image_embeds
|
627 |
+
else:
|
628 |
+
image_embeds = image.unsqueeze(0).unsqueeze(0)
|
629 |
+
if needs_encoding:
|
630 |
+
uncond_image_encoded = self.image_encoder(additional_noise_for_uncond)
|
631 |
+
uncond_image_embeds = uncond_image_encoded.image_embeds
|
632 |
+
else:
|
633 |
+
uncond_image_embeds = additional_noise_for_uncond.unsqueeze(0).unsqueeze(0)
|
634 |
+
|
635 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
636 |
+
uncond_image_embeds = uncond_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
637 |
+
|
638 |
+
return image_embeds, uncond_image_embeds
|
639 |
+
|
640 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
641 |
+
def prepare_ip_adapter_image_embeds(
|
642 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
643 |
+
):
|
644 |
+
if ip_adapter_image_embeds is None:
|
645 |
+
if not isinstance(ip_adapter_image, list):
|
646 |
+
ip_adapter_image = [ip_adapter_image]
|
647 |
+
|
648 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
649 |
+
raise ValueError(
|
650 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
651 |
+
)
|
652 |
+
|
653 |
+
image_embeds = []
|
654 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
655 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
656 |
+
):
|
657 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
658 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
659 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
660 |
+
)
|
661 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
662 |
+
single_negative_image_embeds = torch.stack(
|
663 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
664 |
+
)
|
665 |
+
|
666 |
+
if do_classifier_free_guidance:
|
667 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
668 |
+
single_image_embeds = single_image_embeds.to(device)
|
669 |
+
|
670 |
+
image_embeds.append(single_image_embeds)
|
671 |
+
else:
|
672 |
+
repeat_dims = [1]
|
673 |
+
image_embeds = []
|
674 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
675 |
+
if do_classifier_free_guidance:
|
676 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
677 |
+
single_image_embeds = single_image_embeds.repeat(
|
678 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
679 |
+
)
|
680 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
681 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
682 |
+
)
|
683 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
684 |
+
else:
|
685 |
+
single_image_embeds = single_image_embeds.repeat(
|
686 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
687 |
+
)
|
688 |
+
image_embeds.append(single_image_embeds)
|
689 |
+
|
690 |
+
return image_embeds
|
691 |
+
|
692 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
693 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
694 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
695 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
696 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
697 |
+
# and should be between [0, 1]
|
698 |
+
|
699 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
700 |
+
extra_step_kwargs = {}
|
701 |
+
if accepts_eta:
|
702 |
+
extra_step_kwargs["eta"] = eta
|
703 |
+
|
704 |
+
# check if the scheduler accepts generator
|
705 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
706 |
+
if accepts_generator:
|
707 |
+
extra_step_kwargs["generator"] = generator
|
708 |
+
return extra_step_kwargs
|
709 |
+
|
710 |
+
def check_inputs(
|
711 |
+
self,
|
712 |
+
prompt,
|
713 |
+
prompt_2,
|
714 |
+
image,
|
715 |
+
strength,
|
716 |
+
num_inference_steps,
|
717 |
+
callback_steps,
|
718 |
+
negative_prompt=None,
|
719 |
+
negative_prompt_2=None,
|
720 |
+
prompt_embeds=None,
|
721 |
+
negative_prompt_embeds=None,
|
722 |
+
pooled_prompt_embeds=None,
|
723 |
+
negative_pooled_prompt_embeds=None,
|
724 |
+
ip_adapter_image=None,
|
725 |
+
ip_adapter_image_embeds=None,
|
726 |
+
controlnet_conditioning_scale=1.0,
|
727 |
+
control_guidance_start=0.0,
|
728 |
+
control_guidance_end=1.0,
|
729 |
+
callback_on_step_end_tensor_inputs=None,
|
730 |
+
):
|
731 |
+
if strength < 0 or strength > 1:
|
732 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
733 |
+
if num_inference_steps is None:
|
734 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
735 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
736 |
+
raise ValueError(
|
737 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
738 |
+
f" {type(num_inference_steps)}."
|
739 |
+
)
|
740 |
+
|
741 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
742 |
+
raise ValueError(
|
743 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
744 |
+
f" {type(callback_steps)}."
|
745 |
+
)
|
746 |
+
|
747 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
748 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
749 |
+
):
|
750 |
+
raise ValueError(
|
751 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
752 |
+
)
|
753 |
+
|
754 |
+
if prompt is not None and prompt_embeds is not None:
|
755 |
+
raise ValueError(
|
756 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
757 |
+
" only forward one of the two."
|
758 |
+
)
|
759 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
760 |
+
raise ValueError(
|
761 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
762 |
+
" only forward one of the two."
|
763 |
+
)
|
764 |
+
elif prompt is None and prompt_embeds is None:
|
765 |
+
raise ValueError(
|
766 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
767 |
+
)
|
768 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
769 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
770 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
771 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
772 |
+
|
773 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
774 |
+
raise ValueError(
|
775 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
776 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
777 |
+
)
|
778 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
779 |
+
raise ValueError(
|
780 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
781 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
782 |
+
)
|
783 |
+
|
784 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
785 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
786 |
+
raise ValueError(
|
787 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
788 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
789 |
+
f" {negative_prompt_embeds.shape}."
|
790 |
+
)
|
791 |
+
|
792 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
793 |
+
raise ValueError(
|
794 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
795 |
+
)
|
796 |
+
|
797 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
798 |
+
raise ValueError(
|
799 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
800 |
+
)
|
801 |
+
|
802 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
803 |
+
# conditionings.
|
804 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
805 |
+
if isinstance(prompt, list):
|
806 |
+
logger.warning(
|
807 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
808 |
+
" prompts. The conditionings will be fixed across the prompts."
|
809 |
+
)
|
810 |
+
|
811 |
+
# Check `image`
|
812 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
813 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
814 |
+
)
|
815 |
+
if (
|
816 |
+
isinstance(self.controlnet, ControlNetModel)
|
817 |
+
or is_compiled
|
818 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
819 |
+
):
|
820 |
+
self.check_image(image, prompt, prompt_embeds)
|
821 |
+
elif (
|
822 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
823 |
+
or is_compiled
|
824 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
825 |
+
):
|
826 |
+
if not isinstance(image, list):
|
827 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
828 |
+
|
829 |
+
# When `image` is a nested list:
|
830 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
831 |
+
elif any(isinstance(i, list) for i in image):
|
832 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
833 |
+
elif len(image) != len(self.controlnet.nets):
|
834 |
+
raise ValueError(
|
835 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
836 |
+
)
|
837 |
+
|
838 |
+
for image_ in image:
|
839 |
+
self.check_image(image_, prompt, prompt_embeds)
|
840 |
+
else:
|
841 |
+
assert False
|
842 |
+
|
843 |
+
# Check `controlnet_conditioning_scale`
|
844 |
+
if (
|
845 |
+
isinstance(self.controlnet, ControlNetModel)
|
846 |
+
or is_compiled
|
847 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
848 |
+
):
|
849 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
850 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
851 |
+
elif (
|
852 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
853 |
+
or is_compiled
|
854 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
855 |
+
):
|
856 |
+
if isinstance(controlnet_conditioning_scale, list):
|
857 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
858 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
859 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
860 |
+
self.controlnet.nets
|
861 |
+
):
|
862 |
+
raise ValueError(
|
863 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
864 |
+
" the same length as the number of controlnets"
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
assert False
|
868 |
+
|
869 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
870 |
+
control_guidance_start = [control_guidance_start]
|
871 |
+
|
872 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
873 |
+
control_guidance_end = [control_guidance_end]
|
874 |
+
|
875 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
876 |
+
raise ValueError(
|
877 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
878 |
+
)
|
879 |
+
|
880 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
881 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
882 |
+
raise ValueError(
|
883 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
884 |
+
)
|
885 |
+
|
886 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
887 |
+
if start >= end:
|
888 |
+
raise ValueError(
|
889 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
890 |
+
)
|
891 |
+
if start < 0.0:
|
892 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
893 |
+
if end > 1.0:
|
894 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
895 |
+
|
896 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
897 |
+
raise ValueError(
|
898 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
899 |
+
)
|
900 |
+
|
901 |
+
if ip_adapter_image_embeds is not None:
|
902 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
903 |
+
raise ValueError(
|
904 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
905 |
+
)
|
906 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
907 |
+
raise ValueError(
|
908 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
909 |
+
)
|
910 |
+
|
911 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
912 |
+
def check_image(self, image, prompt, prompt_embeds):
|
913 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
914 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
915 |
+
image_is_np = isinstance(image, np.ndarray)
|
916 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
917 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
918 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
919 |
+
|
920 |
+
if (
|
921 |
+
not image_is_pil
|
922 |
+
and not image_is_tensor
|
923 |
+
and not image_is_np
|
924 |
+
and not image_is_pil_list
|
925 |
+
and not image_is_tensor_list
|
926 |
+
and not image_is_np_list
|
927 |
+
):
|
928 |
+
raise TypeError(
|
929 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
930 |
+
)
|
931 |
+
|
932 |
+
if image_is_pil:
|
933 |
+
image_batch_size = 1
|
934 |
+
else:
|
935 |
+
image_batch_size = len(image)
|
936 |
+
|
937 |
+
if prompt is not None and isinstance(prompt, str):
|
938 |
+
prompt_batch_size = 1
|
939 |
+
elif prompt is not None and isinstance(prompt, list):
|
940 |
+
prompt_batch_size = len(prompt)
|
941 |
+
elif prompt_embeds is not None:
|
942 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
943 |
+
|
944 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
945 |
+
raise ValueError(
|
946 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
947 |
+
)
|
948 |
+
|
949 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
950 |
+
def prepare_control_image(
|
951 |
+
self,
|
952 |
+
image,
|
953 |
+
width,
|
954 |
+
height,
|
955 |
+
batch_size,
|
956 |
+
num_images_per_prompt,
|
957 |
+
device,
|
958 |
+
dtype,
|
959 |
+
do_classifier_free_guidance=False,
|
960 |
+
guess_mode=False,
|
961 |
+
):
|
962 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
963 |
+
image_batch_size = image.shape[0]
|
964 |
+
|
965 |
+
if image_batch_size == 1:
|
966 |
+
repeat_by = batch_size
|
967 |
+
else:
|
968 |
+
# image batch size is the same as prompt batch size
|
969 |
+
repeat_by = num_images_per_prompt
|
970 |
+
|
971 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
972 |
+
|
973 |
+
image = image.to(device=device, dtype=dtype)
|
974 |
+
|
975 |
+
if do_classifier_free_guidance and not guess_mode:
|
976 |
+
image = torch.cat([image] * 2)
|
977 |
+
|
978 |
+
return image
|
979 |
+
|
980 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
981 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
982 |
+
# get the original timestep using init_timestep
|
983 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
984 |
+
|
985 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
986 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
987 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
988 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
989 |
+
|
990 |
+
return timesteps, num_inference_steps - t_start
|
991 |
+
|
992 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
993 |
+
def prepare_latents(
|
994 |
+
self, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator=None, add_noise=True, seed=None
|
995 |
+
):
|
996 |
+
|
997 |
+
if image is None:
|
998 |
+
shape = (
|
999 |
+
batch_size,
|
1000 |
+
num_channels_latents,
|
1001 |
+
int(height) // self.vae_scale_factor,
|
1002 |
+
int(width) // self.vae_scale_factor,
|
1003 |
+
)
|
1004 |
+
init_latents = torch.zeros(shape, device=device, dtype=dtype)
|
1005 |
+
else:
|
1006 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
1007 |
+
raise ValueError(
|
1008 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
latents_mean = latents_std = None
|
1012 |
+
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
|
1013 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
1014 |
+
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
|
1015 |
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
1016 |
+
|
1017 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
1018 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1019 |
+
self.text_encoder_2.to("cpu")
|
1020 |
+
torch.cuda.empty_cache()
|
1021 |
+
|
1022 |
+
image = image.to(device=device, dtype=dtype)
|
1023 |
+
|
1024 |
+
if image.shape[1] == 4:
|
1025 |
+
init_latents = image
|
1026 |
+
|
1027 |
+
else:
|
1028 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1029 |
+
if self.vae.config.force_upcast:
|
1030 |
+
image = image.float()
|
1031 |
+
self.vae.to(dtype=torch.float32)
|
1032 |
+
|
1033 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
1034 |
+
raise ValueError(
|
1035 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
1036 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
elif isinstance(generator, list):
|
1040 |
+
init_latents = [
|
1041 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
1042 |
+
for i in range(batch_size)
|
1043 |
+
]
|
1044 |
+
init_latents = torch.cat(init_latents, dim=0)
|
1045 |
+
else:
|
1046 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
1047 |
+
|
1048 |
+
if self.vae.config.force_upcast:
|
1049 |
+
self.vae.to(dtype)
|
1050 |
+
|
1051 |
+
init_latents = init_latents.to(dtype)
|
1052 |
+
if latents_mean is not None and latents_std is not None:
|
1053 |
+
latents_mean = latents_mean.to(device=self.device, dtype=dtype)
|
1054 |
+
latents_std = latents_std.to(device=self.device, dtype=dtype)
|
1055 |
+
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
|
1056 |
+
else:
|
1057 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
1058 |
+
|
1059 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
1060 |
+
# expand init_latents for batch_size
|
1061 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
1062 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
1063 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
1064 |
+
raise ValueError(
|
1065 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
1066 |
+
)
|
1067 |
+
else:
|
1068 |
+
init_latents = torch.cat([init_latents], dim=0)
|
1069 |
+
|
1070 |
+
if add_noise:
|
1071 |
+
if seed is not None:
|
1072 |
+
generator = torch.manual_seed(seed)
|
1073 |
+
noise = torch.randn(torch.Size(init_latents.shape), dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu").to(device)
|
1074 |
+
init_latents = self.scheduler.add_noise(init_latents.to(device), noise, timestep)
|
1075 |
+
return init_latents.to(device, dtype=dtype)
|
1076 |
+
|
1077 |
+
latents = init_latents
|
1078 |
+
|
1079 |
+
return latents
|
1080 |
+
|
1081 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
1082 |
+
def _get_add_time_ids(
|
1083 |
+
self,
|
1084 |
+
original_size,
|
1085 |
+
crops_coords_top_left,
|
1086 |
+
target_size,
|
1087 |
+
aesthetic_score,
|
1088 |
+
negative_aesthetic_score,
|
1089 |
+
negative_original_size,
|
1090 |
+
negative_crops_coords_top_left,
|
1091 |
+
negative_target_size,
|
1092 |
+
dtype,
|
1093 |
+
text_encoder_projection_dim=None,
|
1094 |
+
):
|
1095 |
+
if self.config.requires_aesthetics_score:
|
1096 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
1097 |
+
add_neg_time_ids = list(
|
1098 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
1099 |
+
)
|
1100 |
+
else:
|
1101 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1102 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
1103 |
+
|
1104 |
+
passed_add_embed_dim = (
|
1105 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
1106 |
+
)
|
1107 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1108 |
+
|
1109 |
+
if (
|
1110 |
+
expected_add_embed_dim > passed_add_embed_dim
|
1111 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1112 |
+
):
|
1113 |
+
raise ValueError(
|
1114 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
1115 |
+
)
|
1116 |
+
elif (
|
1117 |
+
expected_add_embed_dim < passed_add_embed_dim
|
1118 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1119 |
+
):
|
1120 |
+
raise ValueError(
|
1121 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1122 |
+
)
|
1123 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1124 |
+
raise ValueError(
|
1125 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1129 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1130 |
+
|
1131 |
+
return add_time_ids, add_neg_time_ids
|
1132 |
+
|
1133 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1134 |
+
def upcast_vae(self):
|
1135 |
+
dtype = self.vae.dtype
|
1136 |
+
self.vae.to(dtype=torch.float32)
|
1137 |
+
use_torch_2_0_or_xformers = isinstance(
|
1138 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1139 |
+
(
|
1140 |
+
AttnProcessor2_0,
|
1141 |
+
XFormersAttnProcessor,
|
1142 |
+
LoRAXFormersAttnProcessor,
|
1143 |
+
LoRAAttnProcessor2_0,
|
1144 |
+
),
|
1145 |
+
)
|
1146 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1147 |
+
# to be in float32 which can save lots of memory
|
1148 |
+
if use_torch_2_0_or_xformers:
|
1149 |
+
self.vae.post_quant_conv.to(dtype)
|
1150 |
+
self.vae.decoder.conv_in.to(dtype)
|
1151 |
+
self.vae.decoder.mid_block.to(dtype)
|
1152 |
+
|
1153 |
+
@property
|
1154 |
+
def guidance_scale(self):
|
1155 |
+
return self._guidance_scale
|
1156 |
+
|
1157 |
+
@property
|
1158 |
+
def clip_skip(self):
|
1159 |
+
return self._clip_skip
|
1160 |
+
|
1161 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1162 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1163 |
+
# corresponds to doing no classifier free guidance.
|
1164 |
+
@property
|
1165 |
+
def do_classifier_free_guidance(self):
|
1166 |
+
return self._guidance_scale > 1
|
1167 |
+
|
1168 |
+
@property
|
1169 |
+
def cross_attention_kwargs(self):
|
1170 |
+
return self._cross_attention_kwargs
|
1171 |
+
|
1172 |
+
@property
|
1173 |
+
def num_timesteps(self):
|
1174 |
+
return self._num_timesteps
|
1175 |
+
|
1176 |
+
@torch.no_grad()
|
1177 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1178 |
+
def __call__(
|
1179 |
+
self,
|
1180 |
+
prompt: Union[str, List[str]] = None,
|
1181 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1182 |
+
image: PipelineImageInput = None,
|
1183 |
+
control_image: PipelineImageInput = None,
|
1184 |
+
control_mask = None,
|
1185 |
+
identity_control_indices = None,
|
1186 |
+
height: Optional[int] = None,
|
1187 |
+
width: Optional[int] = None,
|
1188 |
+
strength: float = 0.8,
|
1189 |
+
num_inference_steps: int = 50,
|
1190 |
+
timesteps: Optional[List[int]] = None,
|
1191 |
+
sigmas: Optional[List[float]] = None,
|
1192 |
+
guidance_scale: float = 5.0,
|
1193 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1194 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1195 |
+
num_images_per_prompt: Optional[int] = 1,
|
1196 |
+
eta: float = 0.0,
|
1197 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1198 |
+
seed: Optional[int] = None,
|
1199 |
+
latents: Optional[torch.FloatTensor] = None,
|
1200 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1201 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1202 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1203 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1204 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1205 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1206 |
+
output_type: Optional[str] = "pil",
|
1207 |
+
return_dict: bool = True,
|
1208 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1209 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
1210 |
+
guess_mode: bool = False,
|
1211 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
1212 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
1213 |
+
original_size: Tuple[int, int] = None,
|
1214 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1215 |
+
target_size: Tuple[int, int] = None,
|
1216 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1217 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1218 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1219 |
+
aesthetic_score: float = 6.0,
|
1220 |
+
negative_aesthetic_score: float = 2.5,
|
1221 |
+
clip_skip: Optional[int] = None,
|
1222 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1223 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1224 |
+
**kwargs,
|
1225 |
+
):
|
1226 |
+
r"""
|
1227 |
+
Function invoked when calling the pipeline for generation.
|
1228 |
+
|
1229 |
+
Args:
|
1230 |
+
prompt (`str` or `List[str]`, *optional*):
|
1231 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1232 |
+
instead.
|
1233 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1234 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1235 |
+
used in both text-encoders
|
1236 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
1237 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
1238 |
+
The initial image will be used as the starting point for the image generation process. Can also accept
|
1239 |
+
image latents as `image`, if passing latents directly, it will not be encoded again.
|
1240 |
+
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
1241 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
1242 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
1243 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
1244 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
1245 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
1246 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
1247 |
+
batched for input to a single controlnet.
|
1248 |
+
height (`int`, *optional*, defaults to the size of control_image):
|
1249 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1250 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1251 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1252 |
+
width (`int`, *optional*, defaults to the size of control_image):
|
1253 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
1254 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1255 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1256 |
+
strength (`float`, *optional*, defaults to 0.8):
|
1257 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1258 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
1259 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
1260 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
1261 |
+
essentially ignores `image`.
|
1262 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1263 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1264 |
+
expense of slower inference.
|
1265 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1266 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1267 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1268 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1269 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1270 |
+
usually at the expense of lower image quality.
|
1271 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1272 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1273 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1274 |
+
less than `1`).
|
1275 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1276 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1277 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1278 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1279 |
+
The number of images to generate per prompt.
|
1280 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1281 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1282 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1283 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1284 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1285 |
+
to make generation deterministic.
|
1286 |
+
latents (`torch.FloatTensor`, *optional*):
|
1287 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1288 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1289 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1290 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1291 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1292 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1293 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1294 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1295 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1296 |
+
argument.
|
1297 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1298 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1299 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1300 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1301 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1302 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1303 |
+
input argument.
|
1304 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1305 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1306 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1307 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1308 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1309 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1310 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1311 |
+
The output format of the generate image. Choose between
|
1312 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1313 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1314 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1315 |
+
plain tuple.
|
1316 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1317 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1318 |
+
`self.processor` in
|
1319 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1320 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1321 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1322 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1323 |
+
corresponding scale as a list.
|
1324 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1325 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
1326 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
1327 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1328 |
+
The percentage of total steps at which the controlnet starts applying.
|
1329 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1330 |
+
The percentage of total steps at which the controlnet stops applying.
|
1331 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1332 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1333 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1334 |
+
explained in section 2.2 of
|
1335 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1336 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1337 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1338 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1339 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1340 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1341 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1342 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1343 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1344 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1345 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1346 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1347 |
+
micro-conditioning as explained in section 2.2 of
|
1348 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1349 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1350 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1351 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1352 |
+
micro-conditioning as explained in section 2.2 of
|
1353 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1354 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1355 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1356 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1357 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1358 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1359 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1360 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1361 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1362 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1363 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1364 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1365 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1366 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1367 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1368 |
+
clip_skip (`int`, *optional*):
|
1369 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1370 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1371 |
+
callback_on_step_end (`Callable`, *optional*):
|
1372 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1373 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1374 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1375 |
+
`callback_on_step_end_tensor_inputs`.
|
1376 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1377 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1378 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1379 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1380 |
+
|
1381 |
+
Examples:
|
1382 |
+
|
1383 |
+
Returns:
|
1384 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1385 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1386 |
+
containing the output images.
|
1387 |
+
"""
|
1388 |
+
|
1389 |
+
callback = kwargs.pop("callback", None)
|
1390 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1391 |
+
|
1392 |
+
if callback is not None:
|
1393 |
+
deprecate(
|
1394 |
+
"callback",
|
1395 |
+
"1.0.0",
|
1396 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1397 |
+
)
|
1398 |
+
if callback_steps is not None:
|
1399 |
+
deprecate(
|
1400 |
+
"callback_steps",
|
1401 |
+
"1.0.0",
|
1402 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1403 |
+
)
|
1404 |
+
|
1405 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1406 |
+
|
1407 |
+
# align format for control guidance
|
1408 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1409 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1410 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1411 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1412 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1413 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1414 |
+
control_guidance_start, control_guidance_end = (
|
1415 |
+
mult * [control_guidance_start],
|
1416 |
+
mult * [control_guidance_end],
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
# 1. Check inputs. Raise error if not correct
|
1420 |
+
self.check_inputs(
|
1421 |
+
prompt,
|
1422 |
+
prompt_2,
|
1423 |
+
control_image,
|
1424 |
+
strength,
|
1425 |
+
num_inference_steps,
|
1426 |
+
callback_steps,
|
1427 |
+
negative_prompt,
|
1428 |
+
negative_prompt_2,
|
1429 |
+
prompt_embeds,
|
1430 |
+
negative_prompt_embeds,
|
1431 |
+
pooled_prompt_embeds,
|
1432 |
+
negative_pooled_prompt_embeds,
|
1433 |
+
ip_adapter_image,
|
1434 |
+
ip_adapter_image_embeds,
|
1435 |
+
controlnet_conditioning_scale,
|
1436 |
+
control_guidance_start,
|
1437 |
+
control_guidance_end,
|
1438 |
+
callback_on_step_end_tensor_inputs,
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
self._guidance_scale = guidance_scale
|
1442 |
+
self._clip_skip = clip_skip
|
1443 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1444 |
+
|
1445 |
+
# 2. Define call parameters
|
1446 |
+
if prompt is not None and isinstance(prompt, str):
|
1447 |
+
batch_size = 1
|
1448 |
+
elif prompt is not None and isinstance(prompt, list):
|
1449 |
+
batch_size = len(prompt)
|
1450 |
+
else:
|
1451 |
+
batch_size = prompt_embeds.shape[0]
|
1452 |
+
|
1453 |
+
device = self._execution_device
|
1454 |
+
|
1455 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1456 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1457 |
+
|
1458 |
+
global_pool_conditions = (
|
1459 |
+
controlnet.config.global_pool_conditions
|
1460 |
+
if isinstance(controlnet, ControlNetModel)
|
1461 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1462 |
+
)
|
1463 |
+
guess_mode = guess_mode or global_pool_conditions
|
1464 |
+
|
1465 |
+
# 3.1. Encode input prompt
|
1466 |
+
text_encoder_lora_scale = (
|
1467 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1468 |
+
)
|
1469 |
+
(
|
1470 |
+
prompt_embeds,
|
1471 |
+
negative_prompt_embeds,
|
1472 |
+
pooled_prompt_embeds,
|
1473 |
+
negative_pooled_prompt_embeds,
|
1474 |
+
) = self.encode_prompt(
|
1475 |
+
prompt,
|
1476 |
+
prompt_2,
|
1477 |
+
device,
|
1478 |
+
num_images_per_prompt,
|
1479 |
+
self.do_classifier_free_guidance,
|
1480 |
+
negative_prompt,
|
1481 |
+
negative_prompt_2,
|
1482 |
+
prompt_embeds=prompt_embeds,
|
1483 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1484 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1485 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1486 |
+
lora_scale=text_encoder_lora_scale,
|
1487 |
+
clip_skip=self.clip_skip,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
# 3.2 Encode ip_adapter_image
|
1491 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1492 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1493 |
+
ip_adapter_image,
|
1494 |
+
ip_adapter_image_embeds,
|
1495 |
+
device,
|
1496 |
+
batch_size * num_images_per_prompt,
|
1497 |
+
self.do_classifier_free_guidance,
|
1498 |
+
)
|
1499 |
+
|
1500 |
+
# 4. Prepare image and controlnet_conditioning_image
|
1501 |
+
if image is not None:
|
1502 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1503 |
+
else:
|
1504 |
+
strength = 1.0
|
1505 |
+
|
1506 |
+
if isinstance(controlnet, ControlNetModel):
|
1507 |
+
control_image = self.prepare_control_image(
|
1508 |
+
image=control_image,
|
1509 |
+
width=width,
|
1510 |
+
height=height,
|
1511 |
+
batch_size=batch_size * num_images_per_prompt,
|
1512 |
+
num_images_per_prompt=num_images_per_prompt,
|
1513 |
+
device=device,
|
1514 |
+
dtype=controlnet.dtype,
|
1515 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1516 |
+
guess_mode=guess_mode,
|
1517 |
+
)
|
1518 |
+
height, width = control_image.shape[-2:]
|
1519 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1520 |
+
control_images = []
|
1521 |
+
|
1522 |
+
for control_image_ in control_image:
|
1523 |
+
control_image_ = self.prepare_control_image(
|
1524 |
+
image=control_image_,
|
1525 |
+
width=width,
|
1526 |
+
height=height,
|
1527 |
+
batch_size=batch_size * num_images_per_prompt,
|
1528 |
+
num_images_per_prompt=num_images_per_prompt,
|
1529 |
+
device=device,
|
1530 |
+
dtype=controlnet.dtype,
|
1531 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1532 |
+
guess_mode=guess_mode,
|
1533 |
+
)
|
1534 |
+
|
1535 |
+
control_images.append(control_image_)
|
1536 |
+
|
1537 |
+
control_image = control_images
|
1538 |
+
height, width = control_image[0].shape[-2:]
|
1539 |
+
else:
|
1540 |
+
assert False
|
1541 |
+
|
1542 |
+
# 4.1 Region control
|
1543 |
+
controlnet_masks = []
|
1544 |
+
if control_mask is not None:
|
1545 |
+
for mask in control_mask:
|
1546 |
+
mask = np.array(mask)
|
1547 |
+
mask_tensor = torch.from_numpy(mask).to(device=device, dtype=prompt_embeds.dtype)
|
1548 |
+
mask_tensor = mask_tensor[:, :, 0] / 255.
|
1549 |
+
mask_tensor = mask_tensor[None, None]
|
1550 |
+
h, w = mask_tensor.shape[-2:]
|
1551 |
+
control_mask_list = []
|
1552 |
+
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
|
1553 |
+
# Python uses IEEE 754 rounding rules, we need to add a small value to round like the unet model
|
1554 |
+
w_n = round((w + 0.01) / 8)
|
1555 |
+
h_n = round((h + 0.01) / 8)
|
1556 |
+
if scale in [16, 32]:
|
1557 |
+
w_n = round((w_n + 0.01) / 2)
|
1558 |
+
h_n = round((h_n + 0.01) / 2)
|
1559 |
+
if scale == 32:
|
1560 |
+
w_n = round((w_n + 0.01) / 2)
|
1561 |
+
h_n = round((h_n + 0.01) / 2)
|
1562 |
+
scale_mask_weight_image_tensor = F.interpolate(
|
1563 |
+
mask_tensor,(h_n, w_n), mode='bilinear')
|
1564 |
+
control_mask_list.append(scale_mask_weight_image_tensor)
|
1565 |
+
controlnet_masks.append(control_mask_list)
|
1566 |
+
|
1567 |
+
# 5. Prepare timesteps
|
1568 |
+
full_num_inference_steps = int(num_inference_steps / strength) if strength > 0 else num_inference_steps
|
1569 |
+
|
1570 |
+
if timesteps is None:
|
1571 |
+
self.scheduler.set_timesteps(full_num_inference_steps + 1, device=device)
|
1572 |
+
sigmas = self._loglinear_interp(self.ays_noise_sigmas["SDXL"], full_num_inference_steps + 1)
|
1573 |
+
sigmas[-1] = 0
|
1574 |
+
log_sigmas = np.log(np.array((1 - self.scheduler.alphas_cumprod) / self.scheduler.alphas_cumprod) ** 0.5)
|
1575 |
+
timesteps = np.array([self.scheduler._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
1576 |
+
timesteps = timesteps[-(num_inference_steps + 1):-1]
|
1577 |
+
if hasattr(self.scheduler, "sigmas"):
|
1578 |
+
self.scheduler.sigmas = torch.from_numpy(sigmas)[-(num_inference_steps + 1):]
|
1579 |
+
self.scheduler.timesteps = torch.from_numpy(timesteps).to(self.device, dtype=torch.int64)
|
1580 |
+
self.scheduler.num_inference_steps = len(self.scheduler.timesteps)
|
1581 |
+
|
1582 |
+
else:
|
1583 |
+
if "timesteps" in inspect.signature(self.scheduler.set_timesteps).parameters:
|
1584 |
+
self.scheduler.set_timesteps(full_num_inference_steps + 1, timesteps=timesteps, device=device)
|
1585 |
+
else:
|
1586 |
+
self.scheduler.set_timesteps(full_num_inference_steps + 1, device=device)
|
1587 |
+
|
1588 |
+
latent_timestep = self.scheduler.timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1589 |
+
self._num_timesteps = len(self.scheduler.timesteps)
|
1590 |
+
|
1591 |
+
# 6. Prepare latent variables
|
1592 |
+
if latents is None:
|
1593 |
+
num_channels_latents = self.unet.config.in_channels
|
1594 |
+
latents = self.prepare_latents(
|
1595 |
+
image,
|
1596 |
+
latent_timestep,
|
1597 |
+
batch_size * num_images_per_prompt,
|
1598 |
+
num_channels_latents,
|
1599 |
+
height,
|
1600 |
+
width,
|
1601 |
+
prompt_embeds.dtype,
|
1602 |
+
device,
|
1603 |
+
generator,
|
1604 |
+
True,
|
1605 |
+
seed
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
if hasattr(self.scheduler, "sigmas"):
|
1609 |
+
sigmas = self.scheduler.sigmas
|
1610 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
1611 |
+
seeds = [seed] * len(latents) if seed is not None else generator.seed()
|
1612 |
+
brownian_tree_noise_sampler = BrownianTreeNoiseSampler(latents, sigma_min, sigma_max, seed=seeds, cpu=False)
|
1613 |
+
else:
|
1614 |
+
brownian_tree_noise_sampler = None
|
1615 |
+
|
1616 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1617 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1618 |
+
|
1619 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1620 |
+
controlnet_keep = []
|
1621 |
+
for i in range(len(timesteps)):
|
1622 |
+
keeps = [
|
1623 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1624 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1625 |
+
]
|
1626 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1627 |
+
|
1628 |
+
# 7.2 Prepare added time ids & embeddings
|
1629 |
+
if isinstance(control_image, list):
|
1630 |
+
original_size = original_size or control_image[0].shape[-2:]
|
1631 |
+
else:
|
1632 |
+
original_size = original_size or control_image.shape[-2:]
|
1633 |
+
target_size = target_size or (height, width)
|
1634 |
+
|
1635 |
+
if negative_original_size is None:
|
1636 |
+
negative_original_size = original_size
|
1637 |
+
if negative_target_size is None:
|
1638 |
+
negative_target_size = target_size
|
1639 |
+
add_text_embeds = pooled_prompt_embeds
|
1640 |
+
|
1641 |
+
if self.text_encoder_2 is None:
|
1642 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1643 |
+
else:
|
1644 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1645 |
+
|
1646 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1647 |
+
original_size,
|
1648 |
+
crops_coords_top_left,
|
1649 |
+
target_size,
|
1650 |
+
aesthetic_score,
|
1651 |
+
negative_aesthetic_score,
|
1652 |
+
negative_original_size,
|
1653 |
+
negative_crops_coords_top_left,
|
1654 |
+
negative_target_size,
|
1655 |
+
dtype=prompt_embeds.dtype,
|
1656 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1657 |
+
)
|
1658 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1659 |
+
|
1660 |
+
if self.do_classifier_free_guidance:
|
1661 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1662 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1663 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1664 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1665 |
+
|
1666 |
+
prompt_embeds = prompt_embeds.to(device)
|
1667 |
+
add_text_embeds = add_text_embeds.to(device)
|
1668 |
+
add_time_ids = add_time_ids.to(device)
|
1669 |
+
|
1670 |
+
# 8. Denoising loop
|
1671 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1672 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1673 |
+
for i, t in enumerate(timesteps):
|
1674 |
+
# expand the latents if we are doing classifier free guidance
|
1675 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1676 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1677 |
+
|
1678 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1679 |
+
|
1680 |
+
# controlnet(s) inference
|
1681 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1682 |
+
# Infer ControlNet only for the conditional batch.
|
1683 |
+
control_model_input = latents
|
1684 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1685 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1686 |
+
controlnet_added_cond_kwargs = {
|
1687 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1688 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1689 |
+
}
|
1690 |
+
else:
|
1691 |
+
control_model_input = latent_model_input
|
1692 |
+
controlnet_prompt_embeds = prompt_embeds
|
1693 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1694 |
+
|
1695 |
+
if isinstance(controlnet_keep[i], list):
|
1696 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1697 |
+
else:
|
1698 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1699 |
+
if isinstance(controlnet_cond_scale, list):
|
1700 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1701 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1702 |
+
|
1703 |
+
if ip_adapter_image_embeds is None and ip_adapter_image is not None:
|
1704 |
+
encoder_hidden_states = self.unet.process_encoder_hidden_states(prompt_embeds, {"image_embeds": image_embeds})
|
1705 |
+
ip_adapter_image_embeds = encoder_hidden_states[1]
|
1706 |
+
|
1707 |
+
down_block_res_samples = None
|
1708 |
+
mid_block_res_sample = None
|
1709 |
+
|
1710 |
+
for controlnet_index in range(len(self.controlnet.nets)):
|
1711 |
+
ip_adapter_index = next((y for x, y in identity_control_indices if x == controlnet_index), None)
|
1712 |
+
if ip_adapter_index is not None:
|
1713 |
+
control_prompt_embeds = ip_adapter_image_embeds[ip_adapter_index].squeeze(1)
|
1714 |
+
else:
|
1715 |
+
control_prompt_embeds = controlnet_prompt_embeds
|
1716 |
+
down_samples, mid_sample = self.controlnet.nets[controlnet_index](
|
1717 |
+
control_model_input,
|
1718 |
+
t,
|
1719 |
+
encoder_hidden_states=control_prompt_embeds,
|
1720 |
+
controlnet_cond=control_image[controlnet_index],
|
1721 |
+
conditioning_scale=cond_scale[controlnet_index],
|
1722 |
+
guess_mode=guess_mode,
|
1723 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1724 |
+
return_dict=False,
|
1725 |
+
)
|
1726 |
+
|
1727 |
+
if len(controlnet_masks) > controlnet_index and controlnet_masks[controlnet_index] is not None:
|
1728 |
+
down_samples = [
|
1729 |
+
down_sample * mask_weight
|
1730 |
+
for down_sample, mask_weight in zip(down_samples, controlnet_masks[controlnet_index])
|
1731 |
+
]
|
1732 |
+
mid_sample *= controlnet_masks[controlnet_index][-1]
|
1733 |
+
|
1734 |
+
if down_block_res_samples is None and mid_block_res_sample is None:
|
1735 |
+
down_block_res_samples = down_samples
|
1736 |
+
mid_block_res_sample = mid_sample
|
1737 |
+
else:
|
1738 |
+
down_block_res_samples = [
|
1739 |
+
samples_prev + samples_curr
|
1740 |
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
1741 |
+
]
|
1742 |
+
mid_block_res_sample += mid_sample
|
1743 |
+
|
1744 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1745 |
+
# Infered ControlNet only for the conditional batch.
|
1746 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1747 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1748 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1749 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1750 |
+
|
1751 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1752 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1753 |
+
|
1754 |
+
# predict the noise residual
|
1755 |
+
noise_pred = self.unet(
|
1756 |
+
latent_model_input,
|
1757 |
+
t,
|
1758 |
+
encoder_hidden_states=prompt_embeds,
|
1759 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1760 |
+
down_block_additional_residuals=down_block_res_samples,
|
1761 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1762 |
+
added_cond_kwargs=added_cond_kwargs,
|
1763 |
+
return_dict=False,
|
1764 |
+
)[0]
|
1765 |
+
|
1766 |
+
# perform guidance
|
1767 |
+
if self.do_classifier_free_guidance:
|
1768 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1769 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1770 |
+
|
1771 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1772 |
+
# check if scheduler.step supports variance noise
|
1773 |
+
if "variance_noise" in inspect.signature(self.scheduler.step).parameters and brownian_tree_noise_sampler is not None:
|
1774 |
+
sigmas = self.scheduler.sigmas
|
1775 |
+
noise = brownian_tree_noise_sampler(sigmas[i], sigmas[i + 1]).to(device=device, dtype=latents.dtype)
|
1776 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=noise)[0]
|
1777 |
+
else:
|
1778 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1779 |
+
|
1780 |
+
if callback_on_step_end is not None:
|
1781 |
+
callback_kwargs = {}
|
1782 |
+
for k in callback_on_step_end_tensor_inputs:
|
1783 |
+
callback_kwargs[k] = locals()[k]
|
1784 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1785 |
+
|
1786 |
+
latents = callback_outputs.pop("latents", latents)
|
1787 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1788 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1789 |
+
|
1790 |
+
# call the callback, if provided
|
1791 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1792 |
+
progress_bar.update()
|
1793 |
+
if callback is not None and i % callback_steps == 0:
|
1794 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1795 |
+
callback(step_idx, t, latents)
|
1796 |
+
|
1797 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1798 |
+
# manually for max memory savings
|
1799 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1800 |
+
self.unet.to("cpu")
|
1801 |
+
self.controlnet.to("cpu")
|
1802 |
+
torch.cuda.empty_cache()
|
1803 |
+
|
1804 |
+
if not output_type == "latent":
|
1805 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1806 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1807 |
+
|
1808 |
+
if needs_upcasting:
|
1809 |
+
self.upcast_vae()
|
1810 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1811 |
+
|
1812 |
+
# unscale/denormalize the latents
|
1813 |
+
# denormalize with the mean and std if available and not None
|
1814 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1815 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1816 |
+
if has_latents_mean and has_latents_std:
|
1817 |
+
latents_mean = (
|
1818 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1819 |
+
)
|
1820 |
+
latents_std = (
|
1821 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1822 |
+
)
|
1823 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1824 |
+
else:
|
1825 |
+
latents = latents / self.vae.config.scaling_factor
|
1826 |
+
|
1827 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1828 |
+
|
1829 |
+
# cast back to fp16 if needed
|
1830 |
+
if needs_upcasting:
|
1831 |
+
self.vae.to(dtype=torch.float16)
|
1832 |
+
else:
|
1833 |
+
image = latents
|
1834 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1835 |
+
|
1836 |
+
# apply watermark if available
|
1837 |
+
if self.watermark is not None:
|
1838 |
+
image = self.watermark.apply_watermark(image)
|
1839 |
+
|
1840 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1841 |
+
|
1842 |
+
# Offload all models
|
1843 |
+
self.maybe_free_model_hooks()
|
1844 |
+
|
1845 |
+
if not return_dict:
|
1846 |
+
return (image,)
|
1847 |
+
|
1848 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# diffusers @ git+https://github.com/huggingface/diffusers.git@0d7c4790235ac00b4524b492bc2a680dcc5cf6b0
|
2 |
+
controlnet_aux==0.0.8
|
3 |
+
huggingface_hub==0.20.2
|
4 |
+
insightface==0.7.3
|
5 |
+
numpy==1.26.2
|
6 |
+
opencv_contrib_python==4.9.0.80
|
7 |
+
opencv_python==4.9.0.80
|
8 |
+
opencv_python_headless==4.7.0.72
|
9 |
+
Pillow==10.1.0
|
10 |
+
torch==2.0.0
|
11 |
+
torchsde==0.2.6
|
12 |
+
transformers==4.37.1
|
utils.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import PIL
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from diffusers.utils import load_image
|
7 |
+
|
8 |
+
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
9 |
+
stickwidth = 4
|
10 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
11 |
+
kps = np.array(kps)
|
12 |
+
|
13 |
+
# w, h = image_pil.size
|
14 |
+
# out_img = np.zeros([h, w, 3])
|
15 |
+
if type(image_pil) == PIL.Image.Image:
|
16 |
+
out_img = np.array(image_pil)
|
17 |
+
else:
|
18 |
+
out_img = image_pil
|
19 |
+
|
20 |
+
for i in range(len(limbSeq)):
|
21 |
+
index = limbSeq[i]
|
22 |
+
color = color_list[index[0]]
|
23 |
+
|
24 |
+
x = kps[index][:, 0]
|
25 |
+
y = kps[index][:, 1]
|
26 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
27 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
28 |
+
polygon = cv2.ellipse2Poly(
|
29 |
+
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
30 |
+
)
|
31 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
32 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
33 |
+
|
34 |
+
for idx_kp, kp in enumerate(kps):
|
35 |
+
color = color_list[idx_kp]
|
36 |
+
x, y = kp
|
37 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
38 |
+
|
39 |
+
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
40 |
+
return out_img_pil
|
41 |
+
|
42 |
+
|
43 |
+
def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True):
|
44 |
+
# Open the image
|
45 |
+
# image = Image.open(image_path)
|
46 |
+
image = load_image(image_path)
|
47 |
+
|
48 |
+
# Get the current width and height of the image
|
49 |
+
current_width, current_height = image.size
|
50 |
+
|
51 |
+
if maintain_aspect_ratio:
|
52 |
+
# Calculate the aspect ratio of the image
|
53 |
+
aspect_ratio = current_width / current_height
|
54 |
+
|
55 |
+
# Calculate the new dimensions based on the max width and height
|
56 |
+
if current_width / max_width > current_height / max_height:
|
57 |
+
new_width = max_width
|
58 |
+
new_height = int(new_width / aspect_ratio)
|
59 |
+
else:
|
60 |
+
new_height = max_height
|
61 |
+
new_width = int(new_height * aspect_ratio)
|
62 |
+
else:
|
63 |
+
# Use the max width and height as the new dimensions
|
64 |
+
new_width = max_width
|
65 |
+
new_height = max_height
|
66 |
+
|
67 |
+
# Ensure the new dimensions are divisible by 8
|
68 |
+
new_width = (new_width // 8) * 8
|
69 |
+
new_height = (new_height // 8) * 8
|
70 |
+
|
71 |
+
# Resize the image
|
72 |
+
resized_image = image.resize((new_width, new_height))
|
73 |
+
|
74 |
+
return resized_image
|
75 |
+
|
76 |
+
from PIL import Image
|
77 |
+
|
78 |
+
def align_images(image1, image2):
|
79 |
+
"""
|
80 |
+
Resize two images to the same dimensions by cropping the larger image(s) to match the smaller one.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image1 (PIL.Image): First image to be aligned.
|
84 |
+
image2 (PIL.Image): Second image to be aligned.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
tuple: A tuple containing two images with the same dimensions.
|
88 |
+
"""
|
89 |
+
# Determine the new size by taking the smaller width and height from both images
|
90 |
+
new_width = min(image1.size[0], image2.size[0])
|
91 |
+
new_height = min(image1.size[1], image2.size[1])
|
92 |
+
|
93 |
+
# Crop both images if necessary
|
94 |
+
if image1.size != (new_width, new_height):
|
95 |
+
image1 = image1.crop((0, 0, new_width, new_height))
|
96 |
+
if image2.size != (new_width, new_height):
|
97 |
+
image2 = image2.crop((0, 0, new_width, new_height))
|
98 |
+
|
99 |
+
return image1, image2
|