File size: 4,938 Bytes
78b0078
29bfa47
d4a2e16
b5d25fc
 
 
 
 
 
 
 
29bfa47
b5d25fc
 
d4a2e16
29bfa47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d25fc
 
d4a2e16
29bfa47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d25fc
29bfa47
 
 
 
 
 
 
 
 
b6fd3a8
b5d25fc
29bfa47
 
 
 
 
 
 
 
 
b6fd3a8
b5d25fc
 
b6fd3a8
b5d25fc
b6fd3a8
 
 
 
 
 
 
b5d25fc
 
b6fd3a8
 
 
b5d25fc
b6fd3a8
 
 
b5d25fc
 
 
b6fd3a8
b5d25fc
fa5149d
b6fd3a8
b5d25fc
 
29bfa47
b5d25fc
 
 
 
 
 
 
29bfa47
b5d25fc
 
29bfa47
b5d25fc
 
 
 
 
b6fd3a8
b5d25fc
b6fd3a8
b5d25fc
b6fd3a8
29bfa47
b5d25fc
 
 
 
b6fd3a8
 
b5d25fc
 
b6fd3a8
 
b5d25fc
 
29bfa47
b5d25fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import sys
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import gradio as gr
import subprocess
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer

# Check if yarngpt is installed, if not install it manually
try:
    from yarngpt.audiotokenizer import AudioTokenizerV2
except ImportError:
    print("YarnGPT not found, attempting to install...")
    subprocess.run(["chmod", "+x", "install.sh"], check=True)
    subprocess.run(["./install.sh"], check=True)
    
    # Add the yarngpt directory to the Python path
    sys.path.append(os.path.join(os.getcwd(), "yarngpt"))
    
    # Try importing again
    from yarngpt.audiotokenizer import AudioTokenizerV2

# Check if model files exist
wav_tokenizer_config_path = "wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "wavtokenizer_large_speech_320_24k.ckpt"

if not os.path.exists(wav_tokenizer_config_path) or not os.path.exists(wav_tokenizer_model_path):
    print("Model files not found, downloading...")
    if not os.path.exists(wav_tokenizer_config_path):
        subprocess.run([
            "wget", 
            "https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
        ], check=True)
    
    if not os.path.exists(wav_tokenizer_model_path):
        subprocess.run([
            "wget", 
            "https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt"
        ], check=True)

# Initialize paths and models
tokenizer_path = "saheedniyi/YarnGPT2"

# Add debug info
print(f"Current directory: {os.getcwd()}")
print(f"Files in directory: {os.listdir('.')}")
print(f"Config exists: {os.path.exists(wav_tokenizer_config_path)}")
print(f"Model exists: {os.path.exists(wav_tokenizer_model_path)}")

# Initialize the audio tokenizer
try:
    print("Initializing audio tokenizer...")
    audio_tokenizer = AudioTokenizerV2(
        tokenizer_path, wav_tokenizer_model_path, wav_tokenizer_config_path
    )
    print("Audio tokenizer initialized")
except Exception as e:
    print(f"Error initializing audio tokenizer: {str(e)}")
    raise

# Load the model
try:
    print("Loading model...")
    model = AutoModelForCausalLM.from_pretrained(
        tokenizer_path, torch_dtype="auto"
    ).to(audio_tokenizer.device)
    print("Model loaded")
except Exception as e:
    print(f"Error loading model: {str(e)}")
    raise

# Function to generate speech
def generate_speech(text, language, speaker_name, temperature=0.1, repetition_penalty=1.1):
    # Create prompt
    prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=speaker_name)
    
    # Tokenize prompt
    input_ids = audio_tokenizer.tokenize_prompt(prompt)
    
    # Generate output
    output = model.generate(
        input_ids=input_ids,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        max_length=4000,
    )
    
    # Get audio codes and convert to audio
    codes = audio_tokenizer.get_codes(output)
    audio = audio_tokenizer.get_audio(codes)
    
    # Save audio to file
    output_path = "output.wav"
    torchaudio.save(output_path, audio, sample_rate=24000)
    
    return output_path

# Create Gradio interface
def tts_interface(text, language, speaker_name, temperature, repetition_penalty):
    try:
        print(f"Generating speech for: {text[:30]}...")
        audio_path = generate_speech(
            text, 
            language, 
            speaker_name,
            temperature,
            repetition_penalty
        )
        print("Speech generated successfully")
        return audio_path
    except Exception as e:
        print(f"Error in tts_interface: {str(e)}")
        return f"Error: {str(e)}"

# Define available languages and speakers
languages = ["english", "igbo", "yoruba", "hausa", "pidgin"]
speakers = ["idera", "enitan", "abeo", "eniola", "kachi", "aisha", "amara", "bello", "chidi"]

# Create the Gradio interface
demo = gr.Interface(
    fn=tts_interface,
    inputs=[
        gr.Textbox(label="Text to convert to speech", lines=5, value="Welcome to YarnGPT text-to-speech model for African languages."),
        gr.Dropdown(languages, label="Language", value="english"),
        gr.Dropdown(speakers, label="Speaker", value="idera"),
        gr.Slider(0.1, 1.0, value=0.1, label="Temperature"),
        gr.Slider(1.0, 2.0, value=1.1, label="Repetition Penalty"),
    ],
    outputs=gr.Audio(type="filepath"),
    title="YarnGPT Text-to-Speech",
    description="Convert text to speech using YarnGPT model for various African languages",
)

# Launch the app
if __name__ == "__main__":
    print("Starting Gradio interface...")
    demo.launch()