tts / app.py
okewunmi's picture
Update app.py
ac16e60 verified
raw
history blame
5.39 kB
import os
import sys
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import gradio as gr
import subprocess
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
# Clone the YarnGPT repository if it doesn't exist
if not os.path.exists("yarngpt"):
print("Cloning YarnGPT repository...")
subprocess.run(["git", "clone", "https://github.com/saheedniyi02/yarngpt.git"], check=True)
# Add the yarngpt directory to the Python path
yarngpt_path = os.path.abspath("yarngpt")
if yarngpt_path not in sys.path:
sys.path.append(yarngpt_path)
print(f"Added {yarngpt_path} to Python path")
# Now try importing from yarngpt
from yarngpt.audiotokenizer import AudioTokenizerV2
# Download model files if they don't exist
wav_tokenizer_config_path = "wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "wavtokenizer_large_speech_320_24k.ckpt"
if not os.path.exists(wav_tokenizer_config_path):
print(f"Downloading {wav_tokenizer_config_path}...")
subprocess.run([
"wget",
"https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
], check=True)
if not os.path.exists(wav_tokenizer_model_path):
print(f"Downloading {wav_tokenizer_model_path}...")
subprocess.run([
"wget",
"https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt"
], check=True)
# Initialize paths and models
tokenizer_path = "saheedniyi/YarnGPT2"
# Print debug info
print(f"Current directory: {os.getcwd()}")
print(f"Files in directory: {os.listdir('.')}")
print(f"Config exists: {os.path.exists(wav_tokenizer_config_path)}")
print(f"Model exists: {os.path.exists(wav_tokenizer_model_path)}")
# Initialize the audio tokenizer
print("Initializing audio tokenizer...")
audio_tokenizer = AudioTokenizerV2(
tokenizer_path, wav_tokenizer_model_path, wav_tokenizer_config_path
)
print("Audio tokenizer initialized")
# Load the model
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
tokenizer_path, torch_dtype="auto"
).to(audio_tokenizer.device)
print("Model loaded successfully")
# Function to generate speech
def generate_speech(text, language, speaker_name, temperature=0.1, repetition_penalty=1.1):
print(f"Generating speech for: '{text[:50]}...'")
print(f"Parameters: language={language}, speaker={speaker_name}, temp={temperature}, rep_penalty={repetition_penalty}")
# Create prompt
prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=speaker_name)
print("Prompt created")
# Tokenize prompt
input_ids = audio_tokenizer.tokenize_prompt(prompt)
print("Prompt tokenized")
# Generate output
output = model.generate(
input_ids=input_ids,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=4000,
)
print("Model generation complete")
# Get audio codes and convert to audio
codes = audio_tokenizer.get_codes(output)
print("Audio codes extracted")
audio = audio_tokenizer.get_audio(codes)
print("Audio generated")
# Save audio to file
output_path = "output.wav"
torchaudio.save(output_path, audio, sample_rate=24000)
print(f"Audio saved to {output_path}")
return output_path
# Create Gradio interface
def tts_interface(text, language, speaker_name, temperature, repetition_penalty):
try:
audio_path = generate_speech(
text,
language,
speaker_name,
temperature,
repetition_penalty
)
return audio_path
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error in tts_interface: {str(e)}\n{error_details}")
return f"Error: {str(e)}"
# Define available languages and speakers
languages = ["english", "igbo", "yoruba", "hausa", "pidgin"]
speakers = ["idera", "enitan", "abeo", "eniola", "kachi", "aisha", "amara", "bello", "chidi"]
# Create the Gradio interface
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Text to convert to speech", lines=5, value="Welcome to YarnGPT text-to-speech model for African languages."),
gr.Dropdown(languages, label="Language", value="english"),
gr.Dropdown(speakers, label="Speaker", value="idera"),
gr.Slider(0.1, 1.0, value=0.1, label="Temperature"),
gr.Slider(1.0, 2.0, value=1.1, label="Repetition Penalty"),
],
outputs=gr.Audio(type="filepath"),
title="YarnGPT Text-to-Speech",
description="Convert text to speech using YarnGPT model for various African languages.",
examples=[
["The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security.", "english", "idera", 0.1, 1.1],
["Hello, how are you today?", "english", "enitan", 0.1, 1.1],
["Bawo ni?", "yoruba", "eniola", 0.2, 1.2],
]
)
# Launch the app
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch()