|
import os |
|
import sys |
|
import re |
|
import json |
|
import torch |
|
import inflect |
|
import random |
|
import uroman as ur |
|
import numpy as np |
|
import torchaudio |
|
import gradio as gr |
|
import subprocess |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from outetts.wav_tokenizer.decoder import WavTokenizer |
|
|
|
|
|
if not os.path.exists("yarngpt"): |
|
print("Cloning YarnGPT repository...") |
|
subprocess.run(["git", "clone", "https://github.com/saheedniyi02/yarngpt.git"], check=True) |
|
|
|
|
|
yarngpt_path = os.path.abspath("yarngpt") |
|
if yarngpt_path not in sys.path: |
|
sys.path.append(yarngpt_path) |
|
print(f"Added {yarngpt_path} to Python path") |
|
|
|
|
|
from yarngpt.audiotokenizer import AudioTokenizerV2 |
|
|
|
|
|
wav_tokenizer_config_path = "wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml" |
|
wav_tokenizer_model_path = "wavtokenizer_large_speech_320_24k.ckpt" |
|
|
|
if not os.path.exists(wav_tokenizer_config_path): |
|
print(f"Downloading {wav_tokenizer_config_path}...") |
|
subprocess.run([ |
|
"wget", |
|
"https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml" |
|
], check=True) |
|
|
|
if not os.path.exists(wav_tokenizer_model_path): |
|
print(f"Downloading {wav_tokenizer_model_path}...") |
|
subprocess.run([ |
|
"wget", |
|
"https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt" |
|
], check=True) |
|
|
|
|
|
tokenizer_path = "saheedniyi/YarnGPT2" |
|
|
|
|
|
print(f"Current directory: {os.getcwd()}") |
|
print(f"Files in directory: {os.listdir('.')}") |
|
print(f"Config exists: {os.path.exists(wav_tokenizer_config_path)}") |
|
print(f"Model exists: {os.path.exists(wav_tokenizer_model_path)}") |
|
|
|
|
|
print("Initializing audio tokenizer...") |
|
audio_tokenizer = AudioTokenizerV2( |
|
tokenizer_path, wav_tokenizer_model_path, wav_tokenizer_config_path |
|
) |
|
print("Audio tokenizer initialized") |
|
|
|
|
|
print("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
tokenizer_path, torch_dtype="auto" |
|
).to(audio_tokenizer.device) |
|
print("Model loaded successfully") |
|
|
|
|
|
def generate_speech(text, language, speaker_name, temperature=0.1, repetition_penalty=1.1): |
|
print(f"Generating speech for: '{text[:50]}...'") |
|
print(f"Parameters: language={language}, speaker={speaker_name}, temp={temperature}, rep_penalty={repetition_penalty}") |
|
|
|
|
|
prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=speaker_name) |
|
print("Prompt created") |
|
|
|
|
|
input_ids = audio_tokenizer.tokenize_prompt(prompt) |
|
print("Prompt tokenized") |
|
|
|
|
|
output = model.generate( |
|
input_ids=input_ids, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
max_length=4000, |
|
) |
|
print("Model generation complete") |
|
|
|
|
|
codes = audio_tokenizer.get_codes(output) |
|
print("Audio codes extracted") |
|
|
|
audio = audio_tokenizer.get_audio(codes) |
|
print("Audio generated") |
|
|
|
|
|
output_path = "output.wav" |
|
torchaudio.save(output_path, audio, sample_rate=24000) |
|
print(f"Audio saved to {output_path}") |
|
|
|
return output_path |
|
|
|
|
|
def tts_interface(text, language, speaker_name, temperature, repetition_penalty): |
|
try: |
|
audio_path = generate_speech( |
|
text, |
|
language, |
|
speaker_name, |
|
temperature, |
|
repetition_penalty |
|
) |
|
return audio_path |
|
except Exception as e: |
|
import traceback |
|
error_details = traceback.format_exc() |
|
print(f"Error in tts_interface: {str(e)}\n{error_details}") |
|
return f"Error: {str(e)}" |
|
|
|
|
|
languages = ["english", "igbo", "yoruba", "hausa", "pidgin"] |
|
speakers = ["idera", "enitan", "abeo", "eniola", "kachi", "aisha", "amara", "bello", "chidi"] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=tts_interface, |
|
inputs=[ |
|
gr.Textbox(label="Text to convert to speech", lines=5, value="Welcome to YarnGPT text-to-speech model for African languages."), |
|
gr.Dropdown(languages, label="Language", value="english"), |
|
gr.Dropdown(speakers, label="Speaker", value="idera"), |
|
gr.Slider(0.1, 1.0, value=0.1, label="Temperature"), |
|
gr.Slider(1.0, 2.0, value=1.1, label="Repetition Penalty"), |
|
], |
|
outputs=gr.Audio(type="filepath"), |
|
title="YarnGPT Text-to-Speech", |
|
description="Convert text to speech using YarnGPT model for various African languages.", |
|
examples=[ |
|
["The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security.", "english", "idera", 0.1, 1.1], |
|
["Hello, how are you today?", "english", "enitan", 0.1, 1.1], |
|
["Bawo ni?", "yoruba", "eniola", 0.2, 1.2], |
|
] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Starting Gradio interface...") |
|
demo.launch() |