Update app.py
Browse files
app.py
CHANGED
@@ -5,54 +5,128 @@ import torch
|
|
5 |
import torchaudio
|
6 |
import uroman
|
7 |
import numpy as np
|
|
|
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from outetts.wav_tokenizer.decoder import WavTokenizer
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
12 |
if not os.path.exists("yarngpt"):
|
13 |
-
|
14 |
os.system("git clone https://github.com/saheedniyi02/yarngpt.git")
|
15 |
# Add the repository to Python path
|
16 |
sys.path.append("yarngpt")
|
|
|
|
|
17 |
|
18 |
# Import the YarnGPT AudioTokenizer
|
19 |
from yarngpt.audiotokenizer import AudioTokenizerV2
|
20 |
|
21 |
# Constants and paths
|
22 |
MODEL_PATH = "saheedniyi/YarnGPT2b"
|
|
|
|
|
23 |
WAV_TOKENIZER_CONFIG_PATH = "wavtokenizer_config.yaml"
|
24 |
WAV_TOKENIZER_MODEL_PATH = "wavtokenizer_model.ckpt"
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Initialize the model and tokenizer
|
36 |
def initialize_model():
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Initialize the model and tokenizer
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Available voices and languages
|
58 |
VOICES = ["idera", "jude", "kemi", "tunde", "funmi"]
|
@@ -64,6 +138,8 @@ def generate_speech(text, language, voice, temperature=0.1, rep_penalty=1.1):
|
|
64 |
return None, "Please enter some text to convert to speech."
|
65 |
|
66 |
try:
|
|
|
|
|
67 |
# Create prompt
|
68 |
prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=voice)
|
69 |
|
@@ -86,9 +162,11 @@ def generate_speech(text, language, voice, temperature=0.1, rep_penalty=1.1):
|
|
86 |
temp_audio_path = "output.wav"
|
87 |
torchaudio.save(temp_audio_path, audio, sample_rate=24000)
|
88 |
|
|
|
89 |
return temp_audio_path, f"Successfully generated speech for: {text[:50]}..."
|
90 |
|
91 |
except Exception as e:
|
|
|
92 |
return None, f"Error generating speech: {str(e)}"
|
93 |
|
94 |
# Example text for demonstration
|
|
|
5 |
import torchaudio
|
6 |
import uroman
|
7 |
import numpy as np
|
8 |
+
import requests
|
9 |
+
import hashlib
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
from outetts.wav_tokenizer.decoder import WavTokenizer
|
12 |
|
13 |
+
# Set up logging
|
14 |
+
import logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Clone YarnGPT at startup
|
19 |
if not os.path.exists("yarngpt"):
|
20 |
+
logger.info("Cloning YarnGPT repository...")
|
21 |
os.system("git clone https://github.com/saheedniyi02/yarngpt.git")
|
22 |
# Add the repository to Python path
|
23 |
sys.path.append("yarngpt")
|
24 |
+
else:
|
25 |
+
sys.path.append("yarngpt")
|
26 |
|
27 |
# Import the YarnGPT AudioTokenizer
|
28 |
from yarngpt.audiotokenizer import AudioTokenizerV2
|
29 |
|
30 |
# Constants and paths
|
31 |
MODEL_PATH = "saheedniyi/YarnGPT2b"
|
32 |
+
WAV_TOKENIZER_CONFIG_URL = "https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
|
33 |
+
WAV_TOKENIZER_MODEL_URL = "https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt"
|
34 |
WAV_TOKENIZER_CONFIG_PATH = "wavtokenizer_config.yaml"
|
35 |
WAV_TOKENIZER_MODEL_PATH = "wavtokenizer_model.ckpt"
|
36 |
|
37 |
+
# Function to download files with verification
|
38 |
+
def download_file(url, output_path):
|
39 |
+
"""Download a file with progress tracking and verification"""
|
40 |
+
logger.info(f"Downloading {url} to {output_path}")
|
41 |
+
|
42 |
+
# Stream the file download
|
43 |
+
with requests.get(url, stream=True) as response:
|
44 |
+
response.raise_for_status()
|
45 |
+
total_size = int(response.headers.get('content-length', 0))
|
46 |
+
|
47 |
+
with open(output_path, 'wb') as f:
|
48 |
+
downloaded = 0
|
49 |
+
for chunk in response.iter_content(chunk_size=8192):
|
50 |
+
if chunk:
|
51 |
+
f.write(chunk)
|
52 |
+
downloaded += len(chunk)
|
53 |
+
percent = int(100 * downloaded / total_size) if total_size > 0 else 0
|
54 |
+
if percent % 10 == 0:
|
55 |
+
logger.info(f"Download progress: {percent}%")
|
56 |
+
|
57 |
+
# Verify the file exists and has content
|
58 |
+
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
59 |
+
logger.info(f"Successfully downloaded {output_path}")
|
60 |
+
return True
|
61 |
+
else:
|
62 |
+
logger.error(f"Failed to download {output_path}")
|
63 |
+
return False
|
64 |
|
65 |
+
# Download the required files
|
66 |
+
def download_required_files():
|
67 |
+
# Download config file
|
68 |
+
if not os.path.exists(WAV_TOKENIZER_CONFIG_PATH) or os.path.getsize(WAV_TOKENIZER_CONFIG_PATH) == 0:
|
69 |
+
logger.info("Downloading WavTokenizer config...")
|
70 |
+
if not download_file(WAV_TOKENIZER_CONFIG_URL, WAV_TOKENIZER_CONFIG_PATH):
|
71 |
+
raise RuntimeError("Failed to download WavTokenizer config")
|
72 |
+
|
73 |
+
# Download model file
|
74 |
+
if not os.path.exists(WAV_TOKENIZER_MODEL_PATH) or os.path.getsize(WAV_TOKENIZER_MODEL_PATH) == 0:
|
75 |
+
logger.info("Downloading WavTokenizer model...")
|
76 |
+
if not download_file(WAV_TOKENIZER_MODEL_URL, WAV_TOKENIZER_MODEL_PATH):
|
77 |
+
raise RuntimeError("Failed to download WavTokenizer model")
|
78 |
+
|
79 |
+
# Verify files exist
|
80 |
+
if not os.path.exists(WAV_TOKENIZER_CONFIG_PATH) or not os.path.exists(WAV_TOKENIZER_MODEL_PATH):
|
81 |
+
raise RuntimeError("Required files not found")
|
82 |
+
|
83 |
+
# Verify files have content
|
84 |
+
if os.path.getsize(WAV_TOKENIZER_CONFIG_PATH) == 0 or os.path.getsize(WAV_TOKENIZER_MODEL_PATH) == 0:
|
85 |
+
raise RuntimeError("Downloaded files are empty")
|
86 |
+
|
87 |
+
logger.info("All required files are downloaded and verified")
|
88 |
|
89 |
# Initialize the model and tokenizer
|
90 |
def initialize_model():
|
91 |
+
try:
|
92 |
+
# Download required files
|
93 |
+
download_required_files()
|
94 |
+
|
95 |
+
logger.info("Initializing AudioTokenizer...")
|
96 |
+
audio_tokenizer = AudioTokenizerV2(
|
97 |
+
MODEL_PATH,
|
98 |
+
WAV_TOKENIZER_MODEL_PATH,
|
99 |
+
WAV_TOKENIZER_CONFIG_PATH
|
100 |
+
)
|
101 |
+
|
102 |
+
logger.info("Loading YarnGPT model...")
|
103 |
+
model = AutoModelForCausalLM.from_pretrained(
|
104 |
+
MODEL_PATH,
|
105 |
+
torch_dtype="auto"
|
106 |
+
).to(audio_tokenizer.device)
|
107 |
+
|
108 |
+
logger.info("Model initialization complete!")
|
109 |
+
return model, audio_tokenizer
|
110 |
+
except Exception as e:
|
111 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
112 |
+
raise
|
113 |
|
114 |
# Initialize the model and tokenizer
|
115 |
+
logger.info("Starting model initialization...")
|
116 |
+
try:
|
117 |
+
model, audio_tokenizer = initialize_model()
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Error initializing model: {str(e)}")
|
120 |
+
# Provide a basic interface to show the error
|
121 |
+
demo = gr.Interface(
|
122 |
+
fn=lambda x: f"Model initialization failed: {str(e)}. Please check the space logs for more details.",
|
123 |
+
inputs=gr.Textbox(label="Error occurred during initialization"),
|
124 |
+
outputs=gr.Textbox(),
|
125 |
+
title="YarnGPT - Initialization Error"
|
126 |
+
)
|
127 |
+
demo.launch()
|
128 |
+
# Exit the script
|
129 |
+
sys.exit(1)
|
130 |
|
131 |
# Available voices and languages
|
132 |
VOICES = ["idera", "jude", "kemi", "tunde", "funmi"]
|
|
|
138 |
return None, "Please enter some text to convert to speech."
|
139 |
|
140 |
try:
|
141 |
+
logger.info(f"Generating speech for text: {text[:50]}...")
|
142 |
+
|
143 |
# Create prompt
|
144 |
prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=voice)
|
145 |
|
|
|
162 |
temp_audio_path = "output.wav"
|
163 |
torchaudio.save(temp_audio_path, audio, sample_rate=24000)
|
164 |
|
165 |
+
logger.info("Speech generation complete")
|
166 |
return temp_audio_path, f"Successfully generated speech for: {text[:50]}..."
|
167 |
|
168 |
except Exception as e:
|
169 |
+
logger.error(f"Error generating speech: {str(e)}")
|
170 |
return None, f"Error generating speech: {str(e)}"
|
171 |
|
172 |
# Example text for demonstration
|