Spaces:
Runtime error
Runtime error
File size: 10,375 Bytes
d7a7846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import json
import argparse
import random
from typing import List, Dict, Any, Tuple
import re
from collections import defaultdict
# Define category order
CATEGORY_ORDER = [
"detection",
"classification",
"localization",
"comparison",
"relationship",
"diagnosis",
"characterization",
]
def extract_letter_answer(answer: str) -> str:
"""Extract just the letter answer from various answer formats.
Args:
answer: The answer string to extract a letter from
Returns:
str: The extracted letter in uppercase, or empty string if no letter found
"""
if not answer:
return ""
# Convert to string and clean
answer = str(answer).strip()
# If it's just a single letter A-F, return it
if len(answer) == 1 and answer.upper() in "ABCDEF":
return answer.upper()
# Try to match patterns like "A)", "A.", "A ", etc.
match = re.match(r"^([A-F])[).\s]", answer, re.IGNORECASE)
if match:
return match.group(1).upper()
# Try to find any standalone A-F letters preceded by space or start of string
# and followed by space, period, parenthesis or end of string
matches = re.findall(r"(?:^|\s)([A-F])(?:[).\s]|$)", answer, re.IGNORECASE)
if matches:
return matches[0].upper()
# Last resort: just find any A-F letter
letters = re.findall(r"[A-F]", answer, re.IGNORECASE)
if letters:
return letters[0].upper()
# If no letter found, return original (cleaned)
return answer.strip().upper()
def parse_json_lines(file_path: str) -> Tuple[str, List[Dict[str, Any]]]:
"""Parse JSON Lines file and extract valid predictions.
Args:
file_path: Path to the JSON Lines file to parse
Returns:
Tuple containing:
- str: Model name or file path if model name not found
- List[Dict[str, Any]]: List of valid prediction entries
"""
valid_predictions = []
model_name = None
# First try to parse as LLaVA format
try:
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
if data.get("model") == "llava-med-v1.5-mistral-7b":
model_name = data["model"]
for result in data.get("results", []):
if all(k in result for k in ["case_id", "question_id", "correct_answer"]):
# Extract answer with priority: model_answer > validated_answer > raw_output
model_answer = (
result.get("model_answer")
or result.get("validated_answer")
or result.get("raw_output", "")
)
# Add default categories for LLaVA results
prediction = {
"case_id": result["case_id"],
"question_id": result["question_id"],
"model_answer": model_answer,
"correct_answer": result["correct_answer"],
"input": {
"question_data": {
"metadata": {
"categories": [
"detection",
"classification",
"localization",
"comparison",
"relationship",
"diagnosis",
"characterization",
]
}
}
},
}
valid_predictions.append(prediction)
return model_name, valid_predictions
except (json.JSONDecodeError, KeyError):
pass
# If not LLaVA format, process as original format
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
if line.startswith("HTTP Request:"):
continue
try:
data = json.loads(line.strip())
if "model" in data:
model_name = data["model"]
if all(
k in data for k in ["model_answer", "correct_answer", "case_id", "question_id"]
):
valid_predictions.append(data)
except json.JSONDecodeError:
continue
return model_name if model_name else file_path, valid_predictions
def filter_common_questions(
predictions_list: List[List[Dict[str, Any]]]
) -> List[List[Dict[str, Any]]]:
"""Ensure only questions that exist across all models are evaluated.
Args:
predictions_list: List of prediction lists from different models
Returns:
List[List[Dict[str, Any]]]: Filtered predictions containing only common questions
"""
question_sets = [
set((p["case_id"], p["question_id"]) for p in preds) for preds in predictions_list
]
common_questions = set.intersection(*question_sets)
return [
[p for p in preds if (p["case_id"], p["question_id"]) in common_questions]
for preds in predictions_list
]
def calculate_accuracy(
predictions: List[Dict[str, Any]]
) -> Tuple[float, int, int, Dict[str, Dict[str, float]]]:
"""Compute overall and category-level accuracy.
Args:
predictions: List of prediction entries to analyze
Returns:
Tuple containing:
- float: Overall accuracy percentage
- int: Number of correct predictions
- int: Total number of predictions
- Dict[str, Dict[str, float]]: Category-level accuracy statistics
"""
if not predictions:
return 0.0, 0, 0, {}
category_performance = defaultdict(lambda: {"total": 0, "correct": 0})
correct = 0
total = 0
sample_size = min(5, len(predictions))
sampled_indices = random.sample(range(len(predictions)), sample_size)
print("\nSample extracted answers:")
for i in sampled_indices:
pred = predictions[i]
model_ans = extract_letter_answer(pred["model_answer"])
correct_ans = extract_letter_answer(pred["correct_answer"])
print(f"QID: {pred['question_id']}")
print(f" Raw Model Answer: {pred['model_answer']}")
print(f" Extracted Model Answer: {model_ans}")
print(f" Raw Correct Answer: {pred['correct_answer']}")
print(f" Extracted Correct Answer: {correct_ans}")
print("-" * 80)
for pred in predictions:
try:
model_ans = extract_letter_answer(pred["model_answer"])
correct_ans = extract_letter_answer(pred["correct_answer"])
categories = (
pred.get("input", {})
.get("question_data", {})
.get("metadata", {})
.get("categories", [])
)
if model_ans and correct_ans:
total += 1
is_correct = model_ans == correct_ans
if is_correct:
correct += 1
for category in categories:
category_performance[category]["total"] += 1
if is_correct:
category_performance[category]["correct"] += 1
except KeyError:
continue
category_accuracies = {
category: {
"accuracy": (stats["correct"] / stats["total"]) * 100 if stats["total"] > 0 else 0,
"total": stats["total"],
"correct": stats["correct"],
}
for category, stats in category_performance.items()
}
return (correct / total * 100 if total > 0 else 0.0, correct, total, category_accuracies)
def compare_models(file_paths: List[str]) -> None:
"""Compare accuracy between multiple model prediction files.
Args:
file_paths: List of paths to model prediction files to compare
"""
# Parse all files
parsed_results = [parse_json_lines(file_path) for file_path in file_paths]
model_names, predictions_list = zip(*parsed_results)
# Get initial stats
print(f"\n📊 **Initial Accuracy**:")
results = []
category_results = []
for preds, name in zip(predictions_list, model_names):
acc, correct, total, category_acc = calculate_accuracy(preds)
results.append((acc, correct, total, name))
category_results.append(category_acc)
print(f"{name}: Accuracy = {acc:.2f}% ({correct}/{total} correct)")
# Get common questions across all models
filtered_predictions = filter_common_questions(predictions_list)
print(
f"\nQuestions per model after ensuring common questions: {[len(p) for p in filtered_predictions]}"
)
# Compute accuracy on common questions
print(f"\n📊 **Accuracy on Common Questions**:")
filtered_results = []
filtered_category_results = []
for preds, name in zip(filtered_predictions, model_names):
acc, correct, total, category_acc = calculate_accuracy(preds)
filtered_results.append((acc, correct, total, name))
filtered_category_results.append(category_acc)
print(f"{name}: Accuracy = {acc:.2f}% ({correct}/{total} correct)")
# Print category-wise accuracy
print("\nCategory Performance (Common Questions):")
for category in CATEGORY_ORDER:
print(f"\n{category.capitalize()}:")
for model_name, category_acc in zip(model_names, filtered_category_results):
stats = category_acc.get(category, {"accuracy": 0, "total": 0, "correct": 0})
print(f" {model_name}: {stats['accuracy']:.2f}% ({stats['correct']}/{stats['total']})")
def main():
parser = argparse.ArgumentParser(
description="Compare accuracy across multiple model prediction files"
)
parser.add_argument("files", nargs="+", help="Paths to model prediction files")
parser.add_argument("--seed", type=int, default=42, help="Random seed for sampling")
args = parser.parse_args()
random.seed(args.seed)
compare_models(args.files)
if __name__ == "__main__":
main()
|