Spaces:
Runtime error
Runtime error
File size: 13,202 Bytes
d7a7846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#!/usr/bin/env python3
"""
Medical X-ray Question Generation Benchmark aka ChestAgentBench
This script generates clinical questions from X-ray case data of Eurorad dataset using GPT-4o.
It structures questions across different analytical categories and saves them as JSON.
"""
import os
import re
import json
from typing import *
from pprint import pprint
import openai
import numpy as np
from scipy import stats
import plotly.graph_objects as go
from tqdm import tqdm
from benchmark.utils import load_eurorad_dataset
from benchmark.llm import get_llm_response
# Constants
DATA_DIR = "set your data directory here, e.g. /home/MedRAX/data"
DATASET_PATH = os.path.join(DATA_DIR, "eurorad_metadata.json")
SYSTEM_PROMPT = """
You are an expert medical benchmark creation assistant.
Your goal is to generate questions that evaluate a multimodal medical AI agent's ability to interpret and reason about chest X-rays.
""".strip()
CATEGORIES_META = {
"detection": "Identify and locate specific findings in the chest X-ray.",
"classification": "Determine whether specific findings are present or absent in the chest X-ray.",
"enumeration": "Count the number of target findings in the chest X-ray.",
"localization": "Locate a given finding in the chest X-ray.",
"comparison": "Compare the size or position of a specific finding in the chest X-ray.",
"relationship": "Determine the relationship between two or more findings in the chest X-ray.",
"diagnosis": "Make a diagnosis or determine a treatment plan by interpreting the chest X-ray.",
"characterization": "Describe specific attributes (shape, density, margins, etc.) of findings.",
"reasoning": "Explain the medical rationale and thought process behind findings and conclusions.",
}
CATEGORIES = list(CATEGORIES_META.keys())
CATEGORY_COMBINATIONS = [
["detection", "localization", "characterization", "reasoning"], # Detailed Finding Analysis
["detection", "classification", "relationship", "reasoning"], # Pattern Recognition & Relations
["localization", "comparison", "relationship", "reasoning"], # Spatial Understanding
["classification", "comparison", "diagnosis", "reasoning"], # Clinical Decision Making
["classification", "characterization", "diagnosis", "reasoning"], # Diagnostic Characterization
]
DEFAULT_SECTIONS = [
"history",
"image_finding",
"discussion",
"differential_diagnosis",
"diagnosis",
"figures",
]
class Question:
"""A class to generate clinical questions from case data.
This class handles creating structured clinical questions by combining case data with
specified categories and difficulty levels.
Attributes:
type (str): The type of question (e.g. multiple choice)
difficulty (str): Difficulty level of the question
case_data (Dict[str, Any]): Dictionary containing the clinical case data
case_content (str): Formatted case data from selected sections
case_id (str): Unique identifier for the case
categories (List[str]): List of analytical categories this question tests
sections (List[str]): Case sections to include in question
raw_content (Optional[str]): Raw LLM response to the question prompt
content (Optional[Dict[str, str]]): Extracted content from the raw LLM response
"""
def __init__(
self,
type: str,
difficulty: str,
case_data: Dict[str, Any],
categories: List[str],
sections: List[str] = [
"history",
"image_finding",
"discussion",
"differential_diagnosis",
"diagnosis",
"figures",
],
system_prompt: str = "You are an expert medical benchmark creation assistant.",
) -> None:
self.type = type
self.difficulty = difficulty
self.case_data = case_data
self.case_id = case_data["case_id"]
self.categories = categories
self.sections = sections
self.system_prompt = system_prompt
self.case_content = self.select_case_sections()
self.raw_content: Optional[str] = None
self.content: Optional[Dict[str, str]] = None
def create_question_prompt(self) -> str:
"""Creates a formatted prompt for generating a clinical question.
Returns:
str: A structured prompt containing the question parameters and clinical data
"""
category_descriptions = "\n".join(
f"{category}: {desc}"
for category, desc in CATEGORIES_META.items()
if category in self.categories
)
return f"""
You must follow these guidelines:
1. Questions must be answerable using only context and chest X-rays.
- Questions must explicitly mention the referenced figures
- Questions can only reference the chest X-ray figures
2. Questions must have unambiguous, verifiable answers, and should:
- Challenge the agent's analytical capabilities
- Require multi-step reasoning
- Test ability to make precise observations
- Evaluate capability to derive insights and findings from the chest X-ray
3. The agent has access to tools like classification, report generation, segmentation, grounding, visual question answering, etc. Your question should be complex to require the use of such tools.
Create a {self.difficulty} {self.type} clinical question that integrates the following:
{category_descriptions}
based on the following clinical case:
{self.case_content}
Do not use any infomration derived from the CT and MRI images. Do not provide any information and findings about the chest X-rays.
Your question should require the agent to derive insights and findings from the chest X-ray by itself.
Your answer should be verifiable directly in the context of the case.
You can only use the image findings that come from the chest X-ray figures.
Your response must follow this exact format:
THOUGHTS: [Think about different reasoning steps and tools the agent should use to answer the question]
QUESTION: [complete question with relevant context. Incorrect choices should be very close to the correct answer.]
FIGURES: [list of required figures, e.g. ["Figure 1", "Figure 2a"]]
EXPLANATION: [short explanation of why your answer is verifiable in the case]
ANSWER: [correct answer e.g. "A"]
""".strip().replace(
" ", ""
) # remove tabs
def select_case_sections(self) -> str:
"""Extract and format selected sections from case data into paragraphs.
Returns:
str: Formatted string with case sections and content
"""
section_mapping = {
"history": ("history", "No history provided."),
"image_finding": ("image_finding", "No findings provided."),
"discussion": ("discussion", "No discussion provided."),
"differential_diagnosis": (
"differential_diagnosis",
"No differential diagnosis provided.",
),
"diagnosis": ("diagnosis", "No diagnosis provided."),
"figures": ("figures", "No figures provided."),
}
formatted = []
for section in self.sections:
if section in section_mapping:
key, default = section_mapping[section]
content = self.case_data.get(key, default)
if key == "figures":
figures_text = []
for figure in content:
for subfig in figure["subfigures"]:
figures_text.append(f"{subfig['number']}: {subfig['caption']}")
content = "\n".join(figures_text)
formatted.append(f"{section}:\n{content}")
return "\n\n".join(formatted)
def create_question(
self,
client: openai.OpenAI,
temperature: float = 0.7,
top_p: float = 0.95,
max_tokens: int = 500,
model: str = "gpt-4o",
) -> str:
"""Create a clinical question using LLM.
Args:
client (openai.OpenAI): OpenAI client instance
temperature (float): Controls randomness in responses. Defaults to 0.7.
top_p (float): Controls diversity via nucleus sampling. Defaults to 0.95.
max_tokens (int): Max tokens in model response. Defaults to 500.
model (str): OpenAI model to use. Defaults to "gpt-4o".
Returns:
str: LLM response containing formatted question components
"""
self.raw_content = get_llm_response(
client=client,
prompt=self.create_question_prompt(),
system_prompt=self.system_prompt,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
model=model,
)
self.content = self.extract_content()
return self.raw_content
def extract_content(self) -> Dict[str, str]:
"""Extract sections from raw LLM response using regex patterns.
Returns:
Dict[str, str]: Extracted sections including thoughts, question, figures, explanation, and answer
"""
keywords = ["THOUGHTS", "QUESTION", "FIGURES", "EXPLANATION", "ANSWER"]
content = {}
for kw in keywords:
pattern = rf"{kw}:\s*(.*?)(?=\n[A-Z]+:|$)"
match = re.search(pattern, self.raw_content, re.DOTALL)
content[kw.lower()] = match.group(1).strip() if match else None
return content
def save(self, output_path: str) -> Dict[str, Any]:
"""Save question content and metadata as a JSON file.
Args:
output_path (str): Directory path where the JSON file will be saved
Returns:
Dict[str, Any]: Question data including content (thoughts, question, figures, options,
explanation, answer) and metadata (type, difficulty, categories, etc.)
"""
question_metadata = self.content.copy()
# Add metadata
question_metadata["metadata"] = {
"case_id": self.case_id,
"type": self.type,
"difficulty": self.difficulty,
"categories": self.categories,
"sections": self.sections,
}
# Create a directory for the case
case_dir = os.path.join(output_path, str(self.case_id))
os.makedirs(case_dir, exist_ok=True)
# Save the question metadata to a JSON file
output_file = os.path.join(case_dir, f"{self.case_id}_{self.__hash__()}.json")
with open(output_file, "w") as f:
json.dump(question_metadata, f, indent=2)
return question_metadata
def generate_questions(
dataset: Dict[str, Any],
client: openai.OpenAI,
output_dir: str,
skip_first: int = 100,
temperature: float = 0.7,
top_p: float = 0.95,
max_tokens: int = 1200,
model: str = "gpt-4o",
) -> None:
"""Generate questions for each case and category combination.
Args:
dataset: Dictionary of case data
client: OpenAI client instance
output_dir: Directory to save generated questions
skip_first: Number of initial cases to skip
temperature: LLM temperature parameter
top_p: LLM top_p parameter
max_tokens: Maximum tokens for LLM response
model: LLM model name
"""
target_cases = sorted(list(dataset.keys()), key=int)[-len(dataset) : -skip_first]
for case_id in tqdm(target_cases, desc="Processing cases"):
case_data = dataset[case_id]
for category in tqdm(CATEGORY_COMBINATIONS, desc=f"Categories for case {case_id}"):
question = Question(
type="multiple choice (A/B/C/D/E/F)",
difficulty="complex",
case_data=case_data,
categories=category,
sections=DEFAULT_SECTIONS,
system_prompt=SYSTEM_PROMPT,
)
response = question.create_question(
client=client,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
model=model,
)
question.save(output_dir)
def main():
"""Main execution function."""
client = openai.OpenAI()
# Load and verify dataset
dataset = load_eurorad_dataset(
DATASET_PATH,
section="Chest Imaging",
as_dict=True,
filter_by_caption=[
"xray",
"x-ray",
"x ray",
"ray",
"xr",
"radiograph",
],
)
print(f"\n---\nFound {len(dataset)} cases with X-ray mentions\n---\n")
# Optional: Print sample case for verification
case_data = dataset["16798"]
pprint(case_data, sort_dicts=False)
# Generate questions
generate_questions(dataset=dataset, client=client, output_dir="benchmark/questions")
if __name__ == "__main__":
main()
|