Spaces:
Runtime error
Runtime error
File size: 10,959 Bytes
d7a7846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import json
import openai
import os
import time
import logging
import base64
import requests
from datetime import datetime
from tenacity import retry, wait_exponential, stop_after_attempt
from datasets import load_dataset
# Initialize global variables
logger = logging.getLogger('benchmark')
model_name = 'chatgpt-4o-latest' # default value
temperature = 0.2 # default value
log_filename = None
def setup_logging(filename):
"""Setup logging configuration"""
global logger
logger.setLevel(logging.INFO)
# Remove any existing handlers
logger.handlers = []
# Create file handler
handler = logging.FileHandler(filename)
handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(handler)
return logger
def encode_image(image_path):
"""Encode local image to base64 string"""
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
print(f"Error encoding image {image_path}: {str(e)}")
return None
def encode_image_url(image_url):
"""Encode image from URL to base64 string"""
try:
response = requests.get(image_url)
response.raise_for_status()
return base64.b64encode(response.content).decode('utf-8')
except Exception as e:
print(f"Error encoding image from URL {image_url}: {str(e)}")
return None
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
def create_multimodal_request(example, client, use_urls=False, shutdown_event=None):
"""
Create a multimodal request from a dataset example
Args:
example: Dataset example to process
client: OpenAI client
use_urls: Boolean flag to use image URLs instead of local files
shutdown_event: Optional threading.Event for graceful shutdown
"""
prompt = f"""Given the following medical case:
Please answer this multiple choice question:
{example['question']}
Base your answer only on the provided images and case information."""
content = [{"type": "text", "text": prompt}]
if use_urls:
# Handle image URLs from the dataset
image_urls = example['image_source_urls']
if isinstance(image_urls, str):
image_urls = [image_urls]
elif isinstance(image_urls[0], list): # Handle nested lists
image_urls = [url for sublist in image_urls for url in sublist]
for img_url in image_urls:
if img_url and isinstance(img_url, str):
base64_image = encode_image_url(img_url)
if base64_image:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
print(f"Successfully loaded image from URL: {img_url}")
else:
# Handle local image files
image_paths = example['images']
if isinstance(image_paths, str):
image_paths = [image_paths]
elif isinstance(image_paths[0], list): # Handle nested lists
image_paths = [path for sublist in image_paths for path in sublist]
for img_path in image_paths:
if img_path and isinstance(img_path, str):
img_path = img_path.replace('figures/', '')
full_path = os.path.join("figures", img_path)
if os.path.exists(full_path):
base64_image = encode_image(full_path)
if base64_image:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
print(f"Successfully loaded image: {full_path}")
else:
print(f"Image file not found: {full_path}")
# If no images found, log and return None
if len(content) == 1: # Only the text prompt exists
print(f"No images found for question {example.get('question_id', 'unknown')}")
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "skipped",
"reason": "no_images",
"input": {
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_paths": example.get('images' if not use_urls else 'image_source_urls')
}
}
logger.info(json.dumps(log_entry))
return None
messages = [
{"role": "system", "content": "You are a medical imaging expert. Provide only the letter corresponding to your answer choice (A/B/C/D/E/F)."},
{"role": "user", "content": content}
]
try:
start_time = time.time()
response = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=50,
temperature=temperature
)
duration = time.time() - start_time
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"duration": round(duration, 2),
"usage": {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
},
"model_answer": response.choices[0].message.content,
"correct_answer": example['answer'],
"input": {
"messages": messages,
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_source": "url" if use_urls else "local",
"images": example.get('image_source_urls' if use_urls else 'images')
}
}
logger.info(json.dumps(log_entry))
return response
except Exception as e:
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "error",
"error": str(e),
"input": {
"messages": messages,
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_source": "url" if use_urls else "local",
"images": example.get('image_source_urls' if use_urls else 'images')
}
}
logger.info(json.dumps(log_entry))
print(f"Error processing question {example.get('question_id', 'unknown')}: {str(e)}")
raise
def main():
import signal
import threading
import argparse
# Add command line argument parsing
parser = argparse.ArgumentParser(description='Run medical image analysis benchmark')
parser.add_argument('--use-urls', action='store_true', help='Use image URLs instead of local files')
parser.add_argument('--model', type=str, default='chatgpt-4o-latest', help='Model name to use')
parser.add_argument('--temperature', type=float, default=0.2, help='Temperature for model inference')
parser.add_argument('--log-prefix', type=str, help='Prefix for log filename (default: model name)')
parser.add_argument('--max-cases', type=int, default=None, help='Maximum number of cases to process (default: all)')
args = parser.parse_args()
# Set global variables
global model_name, temperature, log_filename
model_name = args.model
temperature = args.temperature
log_prefix = args.log_prefix if args.log_prefix is not None else args.model
log_filename = f"{log_prefix}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
# Setup logging
setup_logging(log_filename)
# Create an event for handling graceful shutdown
shutdown_event = threading.Event()
def signal_handler(signum, frame):
print("\nShutdown signal received. Completing current task...")
shutdown_event.set()
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Load the dataset from Hugging Face
dataset = load_dataset("json", data_files="chestagentbench/metadata.jsonl")
train_dataset = dataset["train"]
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = openai.OpenAI(api_key=api_key)
total_examples = len(train_dataset)
processed = 0
skipped = 0
print(f"Beginning benchmark evaluation for model {model_name}")
print(f"Using {'image URLs' if args.use_urls else 'local files'} for images")
print(f"Temperature: {temperature}")
# Handle max cases limit
dataset_to_process = train_dataset
if args.max_cases is not None:
dataset_to_process = train_dataset.select(range(min(args.max_cases, len(train_dataset))))
total_examples = len(dataset_to_process)
print(f"Processing {total_examples} cases (limited by --max-cases argument)")
for example in dataset_to_process:
if shutdown_event.is_set():
print("\nGraceful shutdown initiated. Saving progress...")
break
processed += 1
response = create_multimodal_request(example, client, args.use_urls, shutdown_event)
if response is None:
skipped += 1
print(f"Skipped question: {example.get('question_id', 'unknown')}")
continue
print(f"Progress: {processed}/{total_examples}")
print(f"Question ID: {example.get('question_id', 'unknown')}")
print(f"Model Answer: {response.choices[0].message.content}")
print(f"Correct Answer: {example['answer']}\n")
print(f"\nBenchmark Summary:")
print(f"Total Examples Processed: {processed}")
print(f"Total Examples Skipped: {skipped}")
# Verify log file exists and has content
if os.path.exists(log_filename) and os.path.getsize(log_filename) > 0:
print(f"\nLog file saved to: {os.path.abspath(log_filename)}")
else:
print(f"\nWarning: Log file could not be verified at: {os.path.abspath(log_filename)}")
print("Please check directory permissions and available disk space.")
if __name__ == "__main__":
main() |