import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import google.generativeai as palm from langchain.embeddings import GooglePalmEmbeddings from langchain.llms import GooglePalm from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory import os os.environ['GOOGLE_API_KEY'] = 'AIzaSyAO1uqCO_1CTZV1zgIlUhk5Mv4Ey08cjzI' def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader= PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): embeddings = GooglePalmEmbeddings() vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) return vector_store def get_conversational_chain(vector_store): llm=GooglePalm() memory = ConversationBufferMemory(memory_key = "chat_history", return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vector_store.as_retriever(), memory=memory) return conversation_chain def user_input(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chatHistory = response['chat_history'] for i, message in enumerate(st.session_state.chatHistory): if i%2 == 0: st.write("Me: ", message.content) else: st.write("mGPT: ", message.content) def main(): st.set_page_config("palm2 pdf ") st.header("Hi , ask me anything from your pdf 😎 ") user_question = st.text_input("Ask a Question from the PDF Files") if "conversation" not in st.session_state: st.session_state.conversation = None if "chatHistory" not in st.session_state: st.session_state.chatHistory = None if user_question: user_input(user_question) with st.sidebar: st.title("Settings") st.subheader("Upload your Documents") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Process Button", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vector_store = get_vector_store(text_chunks) st.session_state.conversation = get_conversational_chain(vector_store) st.success("Done") if __name__ == "__main__": main() #M