import os import torch # model path MODEL_NAME = "saiga_mistral_7b.Q4_K_M.gguf" MODEL_URL = f"https://huggingface.co/TheBloke/saiga_mistral_7b-GGUF/blob/main/{MODEL_NAME}" # FOR PRODUCTION CWD = os.path.dirname(os.path.realpath(__file__)) DATA_PATH = os.path.join(CWD, "data") DOCS_PATH = os.path.join(DATA_PATH, "docs") MODEL_PATH = os.path.join(CWD, "model") MODEL_SAVE_PATH = os.path.join(MODEL_PATH, MODEL_NAME) # RAG params N_GPU_LAYERS = ( -1 if torch.cuda.is_available() else 0 ) # The number of layers to put on the GPU. The rest will be on the CPU (0 means all layers on the CPU). N_BATCH = 1024 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU TEMPERATURE = 0.1 # The temperature of the sampling. 0.1 is a good value for most cases MAX_TOKENS = 1024 # The maximum number of tokens to generate TOP_P = 2 N_CTX = 2048 # context len, up to a maximum of 32k CHUNK_SIZE = 750 # max number of letters for each chunk during splitting CHUNK_OVERLAP = 200 # overlap between chunks SEARCH_TYPE = "mmr" LAST_MESSAGES = 3 # The number of last messages in conversation history to include in the context REPEAT_PENALTY = 1.1 # The penalty for repeating tokens in the output DEVICE = "cuda" if N_GPU_LAYERS > 0 else "cpu" EMBED_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" VECTOR_STORE_PATH = os.path.join(DATA_PATH, "chroma_db") # retriever config SEARCH_KWARGS = {"k": 3, "score_threshold": 0.6} DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}" DEFAULT_RESPONSE_TEMPLATE = "bot\n" DEFAULT_SYSTEM_PROMPT = "Ты ассистент помощник, который отвечает на вопросы используя предоставленный контекст. \ В качестве контекста используются тексты из различных источников. \ Постарайся ответить на вопрос максимально точно. \ Для ответа используй только информацию из контекста и вопроса. Ничего не выдумывай. \ Если не можешь ответить на вопрос, напиши - 'Не хватает данных для ответа.' "