import os
import torch
# model path
MODEL_NAME = "saiga_mistral_7b.Q4_K_M.gguf"
MODEL_URL = f"https://huggingface.co/TheBloke/saiga_mistral_7b-GGUF/blob/main/{MODEL_NAME}"
# FOR PRODUCTION
CWD = os.path.dirname(os.path.realpath(__file__))
DATA_PATH = os.path.join(CWD, "data")
DOCS_PATH = os.path.join(DATA_PATH, "docs")
MODEL_PATH = os.path.join(CWD, "model")
MODEL_SAVE_PATH = os.path.join(MODEL_PATH, MODEL_NAME)
# RAG params
N_GPU_LAYERS = (
-1 if torch.cuda.is_available() else 0
) # The number of layers to put on the GPU. The rest will be on the CPU (0 means all layers on the CPU).
N_BATCH = 1024 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU
TEMPERATURE = 0.1 # The temperature of the sampling. 0.1 is a good value for most cases
MAX_TOKENS = 1024 # The maximum number of tokens to generate
TOP_P = 2
N_CTX = 2048 # context len, up to a maximum of 32k
CHUNK_SIZE = 750 # max number of letters for each chunk during splitting
CHUNK_OVERLAP = 200 # overlap between chunks
SEARCH_TYPE = "mmr"
LAST_MESSAGES = 3 # The number of last messages in conversation history to include in the context
REPEAT_PENALTY = 1.1 # The penalty for repeating tokens in the output
DEVICE = "cuda" if N_GPU_LAYERS > 0 else "cpu"
EMBED_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
VECTOR_STORE_PATH = os.path.join(DATA_PATH, "chroma_db")
# retriever config
SEARCH_KWARGS = {"k": 3, "score_threshold": 0.6}
DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}"
DEFAULT_RESPONSE_TEMPLATE = "bot\n"
DEFAULT_SYSTEM_PROMPT = "Ты ассистент помощник, который отвечает на вопросы используя предоставленный контекст. \
В качестве контекста используются тексты из различных источников. \
Постарайся ответить на вопрос максимально точно. \
Для ответа используй только информацию из контекста и вопроса. Ничего не выдумывай. \
Если не можешь ответить на вопрос, напиши - 'Не хватает данных для ответа.' "