|
import numpy as np |
|
import tensorflow as tf |
|
import cv2 |
|
import gradio as gr |
|
from tensorflow import keras |
|
|
|
model = keras.models.load_model('model_InceptionV3.h5') |
|
|
|
class_mapping = {1: 'Собака', 2: 'Кінь', 3: 'Слон', 4:'Метелик', |
|
5: 'Курка', 6: 'Кіт', 7:'Корова', 8: 'Вівця', |
|
9: 'Павук', 10: 'Білка' |
|
} |
|
|
|
|
|
def predict_image(image): |
|
image = cv2.resize(image, (224, 224)) |
|
image = np.asarray(image) |
|
image = image.astype('float32') / 255.0 |
|
predictions = model.predict(np.expand_dims(image, axis=0))[0] |
|
prediction = {} |
|
for index, probability in enumerate(predictions) : |
|
prediction[class_mapping[index+1]] = float(round(probability, 3)) |
|
print(prediction) |
|
return prediction |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.Markdown("What animal is in the picture") |
|
with gr.Tab("Predict image"): |
|
image_input = gr.Image(label="Upload image") |
|
output = gr.Label(label="Animal predicted by neural network") |
|
image_button = gr.Button("Predict") |
|
image_button.click(predict_image, inputs=image_input, outputs=output) |
|
|
|
demo.launch() |
|
|