bird-detection / app.py
oliver9523's picture
Duplicate from oliver9523/s-egg-mentation
c6a4560
raw
history blame
1.3 kB
import gradio as gr
import cv2
from geti_sdk.deployment import Deployment
from geti_sdk.utils import show_image_with_annotation_scene
# Step 1: Load the deployment
deployment = Deployment.from_folder("deployment")
deployment.load_inference_models(device="CPU")
def resize_image(image, target_dimension):
height, width = image.shape[:2]
max_dimension = max(height, width)
scale_factor = target_dimension / max_dimension
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def infer(image=None):
if image is None:
return [None,'no image']
image = resize_image(image, 1200)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
prediction = deployment.infer(image)
output = show_image_with_annotation_scene(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), prediction, show_results=False)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return [output, prediction.overview]
interface = gr.Interface(fn=infer,
inputs='image',
outputs=['image','text'],
allow_flagging='manual',
flagging_dir='flagged',
examples=["eggsample1.jpg", "eggsample2.jpg"])
interface.launch()