Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,17 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
# import torch
|
3 |
-
# import requests
|
4 |
-
# from torchvision import transforms
|
5 |
import cv2
|
6 |
from geti_sdk.deployment import Deployment
|
7 |
from geti_sdk.utils import show_image_with_annotation_scene
|
8 |
|
9 |
-
# model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
|
10 |
-
# response = requests.get("https://git.io/JJkYN")
|
11 |
-
# labels = response.text.split("\n")
|
12 |
|
13 |
-
|
14 |
-
# Step 1: Load the deployment
|
15 |
deployment = Deployment.from_folder("deployment")
|
16 |
deployment.load_inference_models(device="CPU")
|
17 |
|
@@ -31,27 +24,14 @@ def infer(image=None):
|
|
31 |
return [None,'Error: No image provided']
|
32 |
|
33 |
image = resize_image(image, 1200)
|
34 |
-
|
|
|
35 |
output = show_image_with_annotation_scene(image, prediction, show_results=False)
|
36 |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
37 |
return [output, prediction.overview]
|
38 |
|
39 |
|
40 |
-
# def predict(inp):
|
41 |
-
# inp = transforms.ToTensor()(inp).unsqueeze(0)
|
42 |
-
# with torch.no_grad():
|
43 |
-
# prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
44 |
-
# confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
45 |
-
# return confidences
|
46 |
-
|
47 |
-
|
48 |
def run():
|
49 |
-
# demo = gr.Interface(
|
50 |
-
# fn=predict,
|
51 |
-
# inputs=gr.inputs.Image(type="pil"),
|
52 |
-
# outputs=gr.outputs.Label(num_top_classes=3),
|
53 |
-
# )
|
54 |
-
|
55 |
demo = gr.Interface(fn=infer,
|
56 |
inputs=['image'],
|
57 |
outputs=['image', 'text'],
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
from geti_sdk.deployment import Deployment
|
4 |
from geti_sdk.utils import show_image_with_annotation_scene
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
+
#Load the deployment
|
|
|
8 |
deployment = Deployment.from_folder("deployment")
|
9 |
deployment.load_inference_models(device="CPU")
|
10 |
|
|
|
24 |
return [None,'Error: No image provided']
|
25 |
|
26 |
image = resize_image(image, 1200)
|
27 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
28 |
+
prediction = deployment.infer(image_rgb)
|
29 |
output = show_image_with_annotation_scene(image, prediction, show_results=False)
|
30 |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
31 |
return [output, prediction.overview]
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def run():
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
demo = gr.Interface(fn=infer,
|
36 |
inputs=['image'],
|
37 |
outputs=['image', 'text'],
|