oliver9523 commited on
Commit
c6e0908
·
verified ·
1 Parent(s): c02166b

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +3 -23
main.py CHANGED
@@ -1,17 +1,10 @@
1
  import gradio as gr
2
- # import torch
3
- # import requests
4
- # from torchvision import transforms
5
  import cv2
6
  from geti_sdk.deployment import Deployment
7
  from geti_sdk.utils import show_image_with_annotation_scene
8
 
9
- # model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
10
- # response = requests.get("https://git.io/JJkYN")
11
- # labels = response.text.split("\n")
12
 
13
-
14
- # Step 1: Load the deployment
15
  deployment = Deployment.from_folder("deployment")
16
  deployment.load_inference_models(device="CPU")
17
 
@@ -31,27 +24,14 @@ def infer(image=None):
31
  return [None,'Error: No image provided']
32
 
33
  image = resize_image(image, 1200)
34
- prediction = deployment.infer(image)
 
35
  output = show_image_with_annotation_scene(image, prediction, show_results=False)
36
  output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
37
  return [output, prediction.overview]
38
 
39
 
40
- # def predict(inp):
41
- # inp = transforms.ToTensor()(inp).unsqueeze(0)
42
- # with torch.no_grad():
43
- # prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
44
- # confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
45
- # return confidences
46
-
47
-
48
  def run():
49
- # demo = gr.Interface(
50
- # fn=predict,
51
- # inputs=gr.inputs.Image(type="pil"),
52
- # outputs=gr.outputs.Label(num_top_classes=3),
53
- # )
54
-
55
  demo = gr.Interface(fn=infer,
56
  inputs=['image'],
57
  outputs=['image', 'text'],
 
1
  import gradio as gr
 
 
 
2
  import cv2
3
  from geti_sdk.deployment import Deployment
4
  from geti_sdk.utils import show_image_with_annotation_scene
5
 
 
 
 
6
 
7
+ #Load the deployment
 
8
  deployment = Deployment.from_folder("deployment")
9
  deployment.load_inference_models(device="CPU")
10
 
 
24
  return [None,'Error: No image provided']
25
 
26
  image = resize_image(image, 1200)
27
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
28
+ prediction = deployment.infer(image_rgb)
29
  output = show_image_with_annotation_scene(image, prediction, show_results=False)
30
  output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
31
  return [output, prediction.overview]
32
 
33
 
 
 
 
 
 
 
 
 
34
  def run():
 
 
 
 
 
 
35
  demo = gr.Interface(fn=infer,
36
  inputs=['image'],
37
  outputs=['image', 'text'],