oliver9523 commited on
Commit
e1d803c
·
1 Parent(s): 1121e06

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +29 -0
main.py CHANGED
@@ -2,12 +2,41 @@ import gradio as gr
2
  import torch
3
  import requests
4
  from torchvision import transforms
 
 
 
5
 
6
  model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
7
  response = requests.get("https://git.io/JJkYN")
8
  labels = response.text.split("\n")
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def predict(inp):
12
  inp = transforms.ToTensor()(inp).unsqueeze(0)
13
  with torch.no_grad():
 
2
  import torch
3
  import requests
4
  from torchvision import transforms
5
+ import cv2
6
+ from geti_sdk.deployment import Deployment
7
+ from geti_sdk.utils import show_image_with_annotation_scene
8
 
9
  model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
10
  response = requests.get("https://git.io/JJkYN")
11
  labels = response.text.split("\n")
12
 
13
 
14
+ # Step 1: Load the deployment
15
+ deployment = Deployment.from_folder("deployment")
16
+ deployment.load_inference_models(device="CPU")
17
+
18
+
19
+ def resize_image(image, target_dimension):
20
+ height, width = image.shape[:2]
21
+ max_dimension = max(height, width)
22
+ scale_factor = target_dimension / max_dimension
23
+ new_width = int(width * scale_factor)
24
+ new_height = int(height * scale_factor)
25
+ resized_image = cv2.resize(image, (new_width, new_height))
26
+ return resized_image
27
+
28
+
29
+ def infer(image=None):
30
+ if image is None:
31
+ return [None,'Error: No image provided']
32
+
33
+ image = resize_image(image, 1200)
34
+ prediction = deployment.infer(image)
35
+ output = show_image_with_annotation_scene(image, prediction, show_results=False)
36
+ output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
37
+ return [output, prediction.overview]
38
+
39
+
40
  def predict(inp):
41
  inp = transforms.ToTensor()(inp).unsqueeze(0)
42
  with torch.no_grad():