Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
from geti_sdk.deployment import Deployment | |
from geti_sdk.utils import show_image_with_annotation_scene | |
# Step 1: Load the deployment | |
deployment = Deployment.from_folder("deployment") | |
deployment.load_inference_models(device="CPU") | |
def resize_image(image, max_dimension): | |
height, width = image.shape[:2] | |
if max(height, width) <= max_dimension: | |
return image | |
if height > width: | |
new_height = max_dimension | |
new_width = int(width * (max_dimension / height)) | |
else: | |
new_width = max_dimension | |
new_height = int(height * (max_dimension / width)) | |
resized_image = cv2.resize(image, (new_width, new_height)) | |
return resized_image | |
def infer(image=None): | |
if image is None: | |
return None | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
prediction = deployment.infer(image) | |
output = show_image_with_annotation_scene(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), prediction, show_results=False) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
# output = cv2.resize(output, (224, 224)) | |
return output | |
gr.Interface(fn=infer, | |
inputs='image', | |
outputs='image', | |
examples=["eggsample1.png", "eggsample2.png"]).launch() | |