Spaces:
Running
Running
Oliver Hamilton
commited on
Upload 29 files
Browse files- .gitattributes +1 -0
- deployments/LICENSE +201 -0
- deployments/README.md +227 -0
- deployments/deployment/Instance segmentation task/LICENSE +201 -0
- deployments/deployment/Instance segmentation task/README.md +164 -0
- deployments/deployment/Instance segmentation task/model.json +26 -0
- deployments/deployment/Instance segmentation task/model/config.json +8 -0
- deployments/deployment/Instance segmentation task/model/model.bin +3 -0
- deployments/deployment/Instance segmentation task/model/model.xml +0 -0
- deployments/deployment/Instance segmentation task/python/demo.py +107 -0
- deployments/deployment/Instance segmentation task/python/demo_package/__init__.py +27 -0
- deployments/deployment/Instance segmentation task/python/demo_package/executors/__init__.py +12 -0
- deployments/deployment/Instance segmentation task/python/demo_package/executors/asynchronous.py +79 -0
- deployments/deployment/Instance segmentation task/python/demo_package/executors/synchronous.py +49 -0
- deployments/deployment/Instance segmentation task/python/demo_package/model_wrapper.py +131 -0
- deployments/deployment/Instance segmentation task/python/demo_package/streamer/__init__.py +24 -0
- deployments/deployment/Instance segmentation task/python/demo_package/streamer/streamer.py +346 -0
- deployments/deployment/Instance segmentation task/python/demo_package/utils.py +61 -0
- deployments/deployment/Instance segmentation task/python/demo_package/visualizers/__init__.py +22 -0
- deployments/deployment/Instance segmentation task/python/demo_package/visualizers/vis_utils.py +190 -0
- deployments/deployment/Instance segmentation task/python/demo_package/visualizers/visualizer.py +402 -0
- deployments/deployment/Instance segmentation task/python/requirements.txt +3 -0
- deployments/deployment/Instance segmentation task/python/setup.py +30 -0
- deployments/deployment/project.json +77 -0
- deployments/example_code/demo.py +34 -0
- deployments/example_code/demo_notebook.ipynb +156 -0
- deployments/example_code/demo_ovms.ipynb +421 -0
- deployments/example_code/requirements-notebook.txt +6 -0
- deployments/example_code/requirements.txt +3 -0
- deployments/sample_image.jpg +3 -0
.gitattributes
CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
36 |
eggsample1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
eggsample2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
deployment2/sample_image.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
36 |
eggsample1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
eggsample2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
deployment2/sample_image.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
deployments/sample_image.jpg filter=lfs diff=lfs merge=lfs -text
|
deployments/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright (C) 2018-2021 Intel Corporation
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
deployments/README.md
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code deployment
|
2 |
+
## Table of contents
|
3 |
+
- [Introduction](#introduction)
|
4 |
+
- [Prerequisites](#prerequisites)
|
5 |
+
- [Installation](#Installation)
|
6 |
+
- [Usage](#usage)
|
7 |
+
- [Troubleshooting](#troubleshooting)
|
8 |
+
- [Package contents](#package-contents)
|
9 |
+
|
10 |
+
|
11 |
+
## Introduction
|
12 |
+
|
13 |
+
This code deployment .zip archive contains:
|
14 |
+
|
15 |
+
1. Inference model(s) for your Intel® Geti™ project.
|
16 |
+
|
17 |
+
2. A sample image or video frame, exported from your project.
|
18 |
+
|
19 |
+
3. A very simple code example to get and visualize the result of inference for your
|
20 |
+
project, on the sample image.
|
21 |
+
|
22 |
+
4. Jupyter notebooks with instructions and code for running inference for your project,
|
23 |
+
either locally or via the OpenVINO Model Server (OVMS).
|
24 |
+
|
25 |
+
The deployment holds one model for each task in your project, so if for example
|
26 |
+
you created a deployment for a `Detection -> Classification` project, it will consist of
|
27 |
+
both a detection, and a classification model. The Intel® Geti™ SDK is used to run
|
28 |
+
inference for all models in the project's task chain.
|
29 |
+
|
30 |
+
This README describes the steps required to get the code sample up and running on your
|
31 |
+
machine.
|
32 |
+
|
33 |
+
## Prerequisites
|
34 |
+
|
35 |
+
- [Python 3.9, 3.10 or 3.11](https://www.python.org/downloads/)
|
36 |
+
- [*Optional, only for OVMS notebook*] [Docker](https://docs.docker.com/get-docker/)
|
37 |
+
|
38 |
+
## Installation
|
39 |
+
|
40 |
+
1. Install [prerequisites](#prerequisites). You may also need to
|
41 |
+
[install pip](https://pip.pypa.io/en/stable/installation/). For example, on Ubuntu
|
42 |
+
execute the following command to install Python and pip:
|
43 |
+
|
44 |
+
```
|
45 |
+
sudo apt install python3-dev python3-pip
|
46 |
+
```
|
47 |
+
If you already have installed pip before, make sure it is up to date by doing:
|
48 |
+
|
49 |
+
```
|
50 |
+
pip install --upgrade pip
|
51 |
+
```
|
52 |
+
|
53 |
+
2. Create a clean virtual environment: <a name="virtual-env-creation"></a>
|
54 |
+
|
55 |
+
One of the possible ways for creating a virtual environment is to use `virtualenv`:
|
56 |
+
|
57 |
+
```
|
58 |
+
python -m pip install virtualenv
|
59 |
+
python -m virtualenv <directory_for_environment>
|
60 |
+
```
|
61 |
+
|
62 |
+
Before starting to work inside the virtual environment, it should be activated:
|
63 |
+
|
64 |
+
On Linux and macOS:
|
65 |
+
|
66 |
+
```
|
67 |
+
source <directory_for_environment>/bin/activate
|
68 |
+
```
|
69 |
+
|
70 |
+
On Windows:
|
71 |
+
|
72 |
+
```
|
73 |
+
.\<directory_for_environment>\Scripts\activate
|
74 |
+
```
|
75 |
+
|
76 |
+
Please make sure that the environment contains
|
77 |
+
[wheel](https://pypi.org/project/wheel/) by calling the following command:
|
78 |
+
|
79 |
+
```
|
80 |
+
python -m pip install wheel
|
81 |
+
```
|
82 |
+
|
83 |
+
> **NOTE**: On Linux and macOS, you may need to type `python3` instead of `python`.
|
84 |
+
|
85 |
+
3. In your terminal, navigate to the `example_code` directory in the code deployment
|
86 |
+
package.
|
87 |
+
|
88 |
+
4. Install requirements in the environment:
|
89 |
+
|
90 |
+
```
|
91 |
+
python -m pip install -r requirements.txt
|
92 |
+
```
|
93 |
+
|
94 |
+
5. (Optional) Install the requirements for running the `demo_notebook.ipynb` or
|
95 |
+
`demo_ovms.ipynb` Juypter notebooks:
|
96 |
+
|
97 |
+
```
|
98 |
+
python -m pip install -r requirements-notebook.txt
|
99 |
+
```
|
100 |
+
|
101 |
+
## Usage
|
102 |
+
### Local inference
|
103 |
+
Both `demo.py` script and the `demo_notebook.ipynb` notebook contain a code sample for:
|
104 |
+
|
105 |
+
1. Loading the code deployment (and the models it contains) into memory.
|
106 |
+
|
107 |
+
2. Loading the `sample_image.jpg`, which is a random image taken from the project you
|
108 |
+
deployed.
|
109 |
+
|
110 |
+
3. Running inference on the sample image.
|
111 |
+
|
112 |
+
4. Visualizing the inference results.
|
113 |
+
|
114 |
+
### Inference with OpenVINO Model Server
|
115 |
+
The additional demo notebook `demo_ovms.ipynb` shows how to set up and run an OpenVINO
|
116 |
+
Model Server for your deployment, and make inference requests to it. The notebook
|
117 |
+
contains instructions and code to:
|
118 |
+
|
119 |
+
1. Generate a configuration file for OVMS.
|
120 |
+
|
121 |
+
2. Launch an OVMS docker container with the proper configuration.
|
122 |
+
|
123 |
+
3. Load the image `sample_image.jpg`, as an example image to run inference on.
|
124 |
+
|
125 |
+
4. Make an inference request to OVMS.
|
126 |
+
|
127 |
+
5. Visualize the inference results.
|
128 |
+
|
129 |
+
### Running the demo script
|
130 |
+
|
131 |
+
In your terminal:
|
132 |
+
|
133 |
+
1. Make sure the virtual environment created [above](#virtual-env-creation) is activated.
|
134 |
+
|
135 |
+
2. Make sure you are in the `example_code` directory in your terminal.
|
136 |
+
|
137 |
+
3. Run the demo using:
|
138 |
+
|
139 |
+
```
|
140 |
+
python demo.py
|
141 |
+
```
|
142 |
+
|
143 |
+
The script will run inference on the `sample_image.jpg`. A window will pop up that
|
144 |
+
displays the image, and the results of the inference visualized on top of it.
|
145 |
+
|
146 |
+
### Running the demo notebooks
|
147 |
+
|
148 |
+
In your terminal:
|
149 |
+
|
150 |
+
1. Make sure the virtual environment created [above](#virtual-env-creation) is activated.
|
151 |
+
|
152 |
+
2. Make sure you are in the `example_code` directory in your terminal.
|
153 |
+
|
154 |
+
3. Start JupyterLab using:
|
155 |
+
|
156 |
+
```
|
157 |
+
jupyter lab
|
158 |
+
```
|
159 |
+
|
160 |
+
4. This should launch your web browser and take you to the main page of JupyterLab.
|
161 |
+
|
162 |
+
Inside JuypterLab:
|
163 |
+
|
164 |
+
5. In the sidebar of the JupyterLab interface, double-click on `demo_notebook.ipynb` or
|
165 |
+
`demo_ovms.ipynb` to open one of the notebooks.
|
166 |
+
|
167 |
+
6. Execute the notebook cell by cell to view the inference results.
|
168 |
+
|
169 |
+
|
170 |
+
> **NOTE** The `demo_notebook.ipynb` is a great way to explore the `AnnotationScene`
|
171 |
+
> object that is returned by the inference. The demo code only has very basic
|
172 |
+
> visualization functionality, which may not be sufficient for all use case. For
|
173 |
+
> example if your project contains many labels, it may not be able to visualize the
|
174 |
+
> results very well. In that case, you should build your own visualization logic
|
175 |
+
> based on the `AnnotationScene` returned by the `deployment.infer()` method.
|
176 |
+
|
177 |
+
## Troubleshooting
|
178 |
+
|
179 |
+
1. If you have access to the Internet through a proxy server only, please use pip
|
180 |
+
with a proxy call as demonstrated by the command below:
|
181 |
+
|
182 |
+
```
|
183 |
+
python -m pip install --proxy http://<usr_name>:<password>@<proxyserver_name>:<port#> <pkg_name>
|
184 |
+
```
|
185 |
+
|
186 |
+
2. If you use Anaconda as environment manager, please consider that OpenVINO has
|
187 |
+
limited [Conda support](https://docs.openvino.ai/2021.4/openvino_docs_install_guides_installing_openvino_conda.html).
|
188 |
+
It is still possible to use `conda` to create and activate your python environment,
|
189 |
+
but in that case please use only `pip` (rather than `conda`) as a package manager
|
190 |
+
for installing packages in your environment.
|
191 |
+
|
192 |
+
3. If you have problems when you try to use the `pip install` command, please update
|
193 |
+
pip version as per the following command:
|
194 |
+
```
|
195 |
+
python -m pip install --upgrade pip
|
196 |
+
```
|
197 |
+
|
198 |
+
## Package contents
|
199 |
+
|
200 |
+
The code deployment files are structured as follows:
|
201 |
+
|
202 |
+
- deployment
|
203 |
+
- `project.json`
|
204 |
+
- "<title of task 1>"
|
205 |
+
- model
|
206 |
+
- `model.xml`
|
207 |
+
- `model.bin`
|
208 |
+
- `config.json`
|
209 |
+
- python
|
210 |
+
- model_wrappers
|
211 |
+
- `__init__.py`
|
212 |
+
- model_wrappers required to run demo
|
213 |
+
- `README.md`
|
214 |
+
- `LICENSE`
|
215 |
+
- `demo.py`
|
216 |
+
- `requirements.txt`
|
217 |
+
- "<title of task 2>" (Optional)
|
218 |
+
- ...
|
219 |
+
- example_code
|
220 |
+
- `demo.py`
|
221 |
+
- `demo_notebook.ipynb`
|
222 |
+
- `demo_ovms.ipynb`
|
223 |
+
- `README.md`
|
224 |
+
- `requirements.txt`
|
225 |
+
- `requirements-notebook.txt`
|
226 |
+
- `sample_image.jpg`
|
227 |
+
- `LICENSE`
|
deployments/deployment/Instance segmentation task/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright (C) 2018-2021 Intel Corporation
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
deployments/deployment/Instance segmentation task/README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Exportable code
|
2 |
+
|
3 |
+
Exportable code is a .zip archive that contains simple demo to get and visualize result of model inference.
|
4 |
+
|
5 |
+
## Structure of generated zip
|
6 |
+
|
7 |
+
- `README.md`
|
8 |
+
- `LICENSE`
|
9 |
+
- model
|
10 |
+
- `model.xml`
|
11 |
+
- `model.bin`
|
12 |
+
- `config.json`
|
13 |
+
- python
|
14 |
+
- demo_package
|
15 |
+
- `__init__.py`
|
16 |
+
- executors
|
17 |
+
- `__init__.py`
|
18 |
+
- `asynchronous.py`
|
19 |
+
- `synchronous.py`
|
20 |
+
- inference
|
21 |
+
- `__init__.py`
|
22 |
+
- `inference.py`
|
23 |
+
- streamer
|
24 |
+
- `__init__.py`
|
25 |
+
- `streamer.py`
|
26 |
+
- visualizers
|
27 |
+
- `__init__.py`
|
28 |
+
- `visualizer.py`
|
29 |
+
- `vis_utils.py`
|
30 |
+
- `demo.py`
|
31 |
+
- `requirements.txt`
|
32 |
+
- `setup.py`
|
33 |
+
|
34 |
+
## Prerequisites
|
35 |
+
|
36 |
+
- [Python 3.10](https://www.python.org/downloads/)
|
37 |
+
- [Git](https://git-scm.com/)
|
38 |
+
|
39 |
+
## Install requirements to run demo
|
40 |
+
|
41 |
+
1. Install [prerequisites](#prerequisites). You may also need to [install pip](https://pip.pypa.io/en/stable/installation/). For example, on Ubuntu execute the following command to get pip installed:
|
42 |
+
|
43 |
+
```bash
|
44 |
+
sudo apt install python3-pip
|
45 |
+
```
|
46 |
+
|
47 |
+
1. Create clean virtual environment:
|
48 |
+
|
49 |
+
One of the possible ways for creating a virtual environment is to use `virtualenv`:
|
50 |
+
|
51 |
+
```bash
|
52 |
+
python -m pip install virtualenv
|
53 |
+
python -m virtualenv <directory_for_environment>
|
54 |
+
```
|
55 |
+
|
56 |
+
Before starting to work inside virtual environment, it should be activated:
|
57 |
+
|
58 |
+
On Linux and macOS:
|
59 |
+
|
60 |
+
```bash
|
61 |
+
source <directory_for_environment>/bin/activate
|
62 |
+
```
|
63 |
+
|
64 |
+
On Windows:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
.\<directory_for_environment>\Scripts\activate
|
68 |
+
```
|
69 |
+
|
70 |
+
Please make sure that the environment contains [wheel](https://pypi.org/project/wheel/) by calling the following command:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
python -m pip install wheel
|
74 |
+
```
|
75 |
+
|
76 |
+
> **NOTE**: On Linux and macOS, you may need to type `python3` instead of `python`.
|
77 |
+
|
78 |
+
1. Install requirements in the environment:
|
79 |
+
|
80 |
+
```bash
|
81 |
+
cd python
|
82 |
+
python setup.py install
|
83 |
+
```
|
84 |
+
|
85 |
+
## Usecase
|
86 |
+
|
87 |
+
1. Running the `demo.py` application with the `-h` option yields the following usage message:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
usage: demo.py [-h] -i INPUT -m MODEL [MODEL ...] [-it {sync,async}] [-l] [--no_show] [-d {CPU,GPU}] [--output OUTPUT]
|
91 |
+
|
92 |
+
Options:
|
93 |
+
-h, --help Show this help message and exit.
|
94 |
+
-i INPUT, --input INPUT
|
95 |
+
Required. An input to process. The input must be a single image, a folder of images, video file or camera id.
|
96 |
+
-m MODEL [MODEL ...], --model MODELS [MODELS ...]
|
97 |
+
Optional. Path to directory with trained model and configuration file. Default value points to deployed model folder '../model'.
|
98 |
+
-it {sync,async}, --inference_type {sync,async}
|
99 |
+
Optional. Type of inference for single model.
|
100 |
+
-l, --loop Optional. Enable reading the input in a loop.
|
101 |
+
--no_show Optional. Disables showing inference results on UI.
|
102 |
+
-d {CPU,GPU}, --device {CPU,GPU}
|
103 |
+
Optional. Device to infer the model.
|
104 |
+
--output OUTPUT Optional. Output path to save input data with predictions.
|
105 |
+
```
|
106 |
+
|
107 |
+
2. As a `model` parameter the default value `../model` will be used. Or you can specify the other path to the model directory from generated zip. You can pass as `input` a single image, a folder of images, a video file, or a web camera id. So you can use the following command to do inference with a pre-trained model:
|
108 |
+
|
109 |
+
```bash
|
110 |
+
python3 demo.py -i <path_to_video>/inputVideo.mp4
|
111 |
+
```
|
112 |
+
|
113 |
+
You can press `Q` to stop inference during demo running.
|
114 |
+
|
115 |
+
> **NOTE**: If you provide a single image as input, the demo processes and renders it quickly, then exits. To continuously
|
116 |
+
> visualize inference results on the screen, apply the `--loop` option, which enforces processing a single image in a loop.
|
117 |
+
> In this case, you can stop the demo by pressing `Q` button or killing the process in the terminal (`Ctrl+C` for Linux).
|
118 |
+
>
|
119 |
+
> **NOTE**: Default configuration contains info about pre- and post processing for inference and is guaranteed to be correct.
|
120 |
+
> Also you can change `config.json` that specifies the confidence threshold and color for each class visualization, but any
|
121 |
+
> changes should be made with caution.
|
122 |
+
|
123 |
+
3. To save inferenced results with predictions on it, you can specify the folder path, using `--output`.
|
124 |
+
It works for images, videos, image folders and web cameras. To prevent issues, do not specify it together with a `--loop` parameter.
|
125 |
+
|
126 |
+
```bash
|
127 |
+
python3 demo.py \
|
128 |
+
--input <path_to_image>/inputImage.jpg \
|
129 |
+
--models ../model \
|
130 |
+
--output resulted_images
|
131 |
+
```
|
132 |
+
|
133 |
+
4. To run a demo on a web camera, you need to know its ID.
|
134 |
+
You can check a list of camera devices by running this command line on Linux system:
|
135 |
+
|
136 |
+
```bash
|
137 |
+
sudo apt-get install v4l-utils
|
138 |
+
v4l2-ctl --list-devices
|
139 |
+
```
|
140 |
+
|
141 |
+
The output will look like this:
|
142 |
+
|
143 |
+
```bash
|
144 |
+
Integrated Camera (usb-0000:00:1a.0-1.6):
|
145 |
+
/dev/video0
|
146 |
+
```
|
147 |
+
|
148 |
+
After that, you can use this `/dev/video0` as a camera ID for `--input`.
|
149 |
+
|
150 |
+
## Troubleshooting
|
151 |
+
|
152 |
+
1. If you have access to the Internet through the proxy server only, please use pip with proxy call as demonstrated by command below:
|
153 |
+
|
154 |
+
```bash
|
155 |
+
python -m pip install --proxy http://<usr_name>:<password>@<proxyserver_name>:<port#> <pkg_name>
|
156 |
+
```
|
157 |
+
|
158 |
+
1. If you use Anaconda environment, you should consider that OpenVINO has limited [Conda support](https://docs.openvino.ai/2021.4/openvino_docs_install_guides_installing_openvino_conda.html) for Python 3.6 and 3.7 versions only. But the demo package requires python 3.8. So please use other tools to create the environment (like `venv` or `virtualenv`) and use `pip` as a package manager.
|
159 |
+
|
160 |
+
1. If you have problems when you try to use `pip install` command, please update pip version by following command:
|
161 |
+
|
162 |
+
```bash
|
163 |
+
python -m pip install --upgrade pip
|
164 |
+
```
|
deployments/deployment/Instance segmentation task/model.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id": "6807ecb527f5406c0158ae5b",
|
3 |
+
"name": "RTMDet_tiny OpenVINO FP16",
|
4 |
+
"version": 1,
|
5 |
+
"creation_date": "2025-04-22T19:23:33.177000+00:00",
|
6 |
+
"model_format": "OpenVINO",
|
7 |
+
"precision": [
|
8 |
+
"FP16"
|
9 |
+
],
|
10 |
+
"has_xai_head": false,
|
11 |
+
"target_device": "CPU",
|
12 |
+
"target_device_type": null,
|
13 |
+
"performance": {
|
14 |
+
"score": 0.9520755876647748
|
15 |
+
},
|
16 |
+
"size": 12618721,
|
17 |
+
"latency": 0,
|
18 |
+
"fps_throughput": 0,
|
19 |
+
"optimization_type": "MO",
|
20 |
+
"optimization_objectives": {},
|
21 |
+
"model_status": "SUCCESS",
|
22 |
+
"configurations": [],
|
23 |
+
"previous_revision_id": "6807ecb527f5406c0158ae58",
|
24 |
+
"previous_trained_revision_id": "6807ecb527f5406c0158ae58",
|
25 |
+
"optimization_methods": []
|
26 |
+
}
|
deployments/deployment/Instance segmentation task/model/config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task_type": "instance_segmentation",
|
3 |
+
"model_type": "MaskRCNN",
|
4 |
+
"model_parameters": {
|
5 |
+
"labels": "otx_empty_lbl egg Empty",
|
6 |
+
"labels_ids": "None 6483114c18fb8c1c529bd150 6483114c18fb8c1c529bd154"
|
7 |
+
}
|
8 |
+
}
|
deployments/deployment/Instance segmentation task/model/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b7c38bcc92193ed6d51a8650f2a105133fd2571edee7c11fb735f4c85a5b43f
|
3 |
+
size 11876754
|
deployments/deployment/Instance segmentation task/model/model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deployments/deployment/Instance segmentation task/python/demo.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Demo based on ModelAPI."""
|
5 |
+
|
6 |
+
import sys
|
7 |
+
from argparse import SUPPRESS, ArgumentParser
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from demo_package import AsyncExecutor, ModelWrapper, SyncExecutor, create_visualizer
|
11 |
+
|
12 |
+
|
13 |
+
def build_argparser() -> ArgumentParser:
|
14 |
+
"""Returns an ArgumentParser for parsing command line arguments."""
|
15 |
+
parser = ArgumentParser(add_help=False)
|
16 |
+
args = parser.add_argument_group("Options")
|
17 |
+
args.add_argument(
|
18 |
+
"-h",
|
19 |
+
"--help",
|
20 |
+
action="help",
|
21 |
+
default=SUPPRESS,
|
22 |
+
help="Show this help message and exit.",
|
23 |
+
)
|
24 |
+
args.add_argument(
|
25 |
+
"-i",
|
26 |
+
"--input",
|
27 |
+
required=True,
|
28 |
+
help="Required. An input to process. The input must be a single image, "
|
29 |
+
"a folder of images, video file or camera id.",
|
30 |
+
)
|
31 |
+
args.add_argument(
|
32 |
+
"-m",
|
33 |
+
"--model",
|
34 |
+
help="Optional. Path to directory with trained model and configuration file. "
|
35 |
+
"Default value points to deployed model folder '../model'.",
|
36 |
+
default=Path("../model"),
|
37 |
+
type=Path,
|
38 |
+
)
|
39 |
+
args.add_argument(
|
40 |
+
"-it",
|
41 |
+
"--inference_type",
|
42 |
+
help="Optional. Type of inference for single model.",
|
43 |
+
choices=["sync", "async"],
|
44 |
+
default="async",
|
45 |
+
type=str,
|
46 |
+
)
|
47 |
+
args.add_argument(
|
48 |
+
"-l",
|
49 |
+
"--loop",
|
50 |
+
help="Optional. Enable reading the input in a loop.",
|
51 |
+
default=False,
|
52 |
+
action="store_true",
|
53 |
+
)
|
54 |
+
args.add_argument(
|
55 |
+
"--no_show",
|
56 |
+
help="Optional. Disables showing inference results on UI.",
|
57 |
+
default=False,
|
58 |
+
action="store_true",
|
59 |
+
)
|
60 |
+
args.add_argument(
|
61 |
+
"-d",
|
62 |
+
"--device",
|
63 |
+
help="Optional. Device to infer the model.",
|
64 |
+
choices=["CPU", "GPU"],
|
65 |
+
default="CPU",
|
66 |
+
type=str,
|
67 |
+
)
|
68 |
+
args.add_argument(
|
69 |
+
"--output",
|
70 |
+
default="./outputs/model_visualization",
|
71 |
+
type=str,
|
72 |
+
help="Optional. Output path to save input data with predictions.",
|
73 |
+
)
|
74 |
+
|
75 |
+
return parser
|
76 |
+
|
77 |
+
|
78 |
+
EXECUTORS = {
|
79 |
+
"sync": SyncExecutor,
|
80 |
+
"async": AsyncExecutor,
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
def main() -> int:
|
85 |
+
"""Main function that is used to run demo."""
|
86 |
+
args = build_argparser().parse_args()
|
87 |
+
|
88 |
+
if args.loop and args.output:
|
89 |
+
msg = "--loop and --output cannot be both specified"
|
90 |
+
raise ValueError(msg)
|
91 |
+
|
92 |
+
# create models
|
93 |
+
model = ModelWrapper(args.model, device=args.device)
|
94 |
+
inferencer = EXECUTORS[args.inference_type]
|
95 |
+
|
96 |
+
# create visualizer
|
97 |
+
visualizer = create_visualizer(model.task_type, model.labels, no_show=args.no_show, output=args.output)
|
98 |
+
|
99 |
+
# create inferencer and run
|
100 |
+
demo = inferencer(model, visualizer)
|
101 |
+
demo.run(args.input, args.loop and not args.no_show)
|
102 |
+
|
103 |
+
return 0
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
sys.exit(main())
|
deployments/deployment/Instance segmentation task/python/demo_package/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Initialization of demo package."""
|
5 |
+
|
6 |
+
from .executors import AsyncExecutor, SyncExecutor
|
7 |
+
from .model_wrapper import ModelWrapper
|
8 |
+
from .utils import create_visualizer
|
9 |
+
from .visualizers import (
|
10 |
+
BaseVisualizer,
|
11 |
+
ClassificationVisualizer,
|
12 |
+
InstanceSegmentationVisualizer,
|
13 |
+
ObjectDetectionVisualizer,
|
14 |
+
SemanticSegmentationVisualizer,
|
15 |
+
)
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"SyncExecutor",
|
19 |
+
"AsyncExecutor",
|
20 |
+
"create_visualizer",
|
21 |
+
"ModelWrapper",
|
22 |
+
"BaseVisualizer",
|
23 |
+
"ClassificationVisualizer",
|
24 |
+
"SemanticSegmentationVisualizer",
|
25 |
+
"InstanceSegmentationVisualizer",
|
26 |
+
"ObjectDetectionVisualizer",
|
27 |
+
]
|
deployments/deployment/Instance segmentation task/python/demo_package/executors/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Initialization of executors."""
|
5 |
+
|
6 |
+
from .asynchronous import AsyncExecutor
|
7 |
+
from .synchronous import SyncExecutor
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"SyncExecutor",
|
11 |
+
"AsyncExecutor",
|
12 |
+
]
|
deployments/deployment/Instance segmentation task/python/demo_package/executors/asynchronous.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Async executor based on ModelAPI."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import time
|
9 |
+
from typing import TYPE_CHECKING, Any
|
10 |
+
|
11 |
+
from model_api.pipelines import AsyncPipeline
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
import numpy as np
|
15 |
+
from demo_package.model_wrapper import ModelWrapper
|
16 |
+
|
17 |
+
|
18 |
+
from demo_package.streamer import get_streamer
|
19 |
+
from demo_package.visualizers import BaseVisualizer, dump_frames
|
20 |
+
|
21 |
+
|
22 |
+
class AsyncExecutor:
|
23 |
+
"""Async inferencer.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
model: model for inference
|
27 |
+
visualizer: visualizer of inference results
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, model: ModelWrapper, visualizer: BaseVisualizer) -> None:
|
31 |
+
self.model = model
|
32 |
+
self.visualizer = visualizer
|
33 |
+
self.async_pipeline = AsyncPipeline(self.model.core_model)
|
34 |
+
|
35 |
+
def run(self, input_stream: int | str, loop: bool = False) -> None:
|
36 |
+
"""Async inference for input stream (image, video stream, camera)."""
|
37 |
+
streamer = get_streamer(input_stream, loop)
|
38 |
+
next_frame_id = 0
|
39 |
+
next_frame_id_to_show = 0
|
40 |
+
stop_visualization = False
|
41 |
+
saved_frames = []
|
42 |
+
|
43 |
+
for frame in streamer:
|
44 |
+
results = self.async_pipeline.get_result(next_frame_id_to_show)
|
45 |
+
while results:
|
46 |
+
start_time = time.perf_counter()
|
47 |
+
output = self.render_result(results)
|
48 |
+
next_frame_id_to_show += 1
|
49 |
+
self.visualizer.show(output)
|
50 |
+
if self.visualizer.output:
|
51 |
+
saved_frames.append(output)
|
52 |
+
stop_visualization = self.visualizer.is_quit()
|
53 |
+
# visualize video not faster than the original FPS
|
54 |
+
self.visualizer.video_delay(time.perf_counter() - start_time, streamer)
|
55 |
+
results = self.async_pipeline.get_result(next_frame_id_to_show)
|
56 |
+
if stop_visualization:
|
57 |
+
break
|
58 |
+
self.async_pipeline.submit_data(frame, next_frame_id, {"frame": frame})
|
59 |
+
next_frame_id += 1
|
60 |
+
self.async_pipeline.await_all()
|
61 |
+
for next_id in range(next_frame_id_to_show, next_frame_id):
|
62 |
+
start_time = time.perf_counter()
|
63 |
+
results = self.async_pipeline.get_result(next_id)
|
64 |
+
if not results:
|
65 |
+
msg = "Async pipeline returned None results"
|
66 |
+
raise RuntimeError(msg)
|
67 |
+
output = self.render_result(results)
|
68 |
+
self.visualizer.show(output)
|
69 |
+
if self.visualizer.output:
|
70 |
+
saved_frames.append(output)
|
71 |
+
# visualize video not faster than the original FPS
|
72 |
+
self.visualizer.video_delay(time.perf_counter() - start_time, streamer)
|
73 |
+
dump_frames(saved_frames, self.visualizer.output, input_stream, streamer)
|
74 |
+
|
75 |
+
def render_result(self, results: tuple[Any, dict]) -> np.ndarray:
|
76 |
+
"""Render for results of inference."""
|
77 |
+
predictions, frame_meta = results
|
78 |
+
current_frame = frame_meta["frame"]
|
79 |
+
return self.visualizer.draw(current_frame, predictions)
|
deployments/deployment/Instance segmentation task/python/demo_package/executors/synchronous.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Synchronous Executor based on ModelAPI."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import time
|
9 |
+
from typing import TYPE_CHECKING
|
10 |
+
|
11 |
+
if TYPE_CHECKING:
|
12 |
+
from demo_package.model_wrapper import ModelWrapper
|
13 |
+
from demo_package.visualizers import BaseVisualizer
|
14 |
+
|
15 |
+
from demo_package.streamer.streamer import get_streamer
|
16 |
+
from demo_package.visualizers import dump_frames
|
17 |
+
|
18 |
+
|
19 |
+
class SyncExecutor:
|
20 |
+
"""Synchronous executor for model inference.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model (ModelContainer): model for inference
|
24 |
+
visualizer (Visualizer): visualizer of inference results. Defaults to None.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, model: ModelWrapper, visualizer: BaseVisualizer) -> None:
|
28 |
+
self.model = model
|
29 |
+
self.visualizer = visualizer
|
30 |
+
|
31 |
+
def run(self, input_stream: int | str, loop: bool = False) -> None:
|
32 |
+
"""Run demo using input stream (image, video stream, camera)."""
|
33 |
+
streamer = get_streamer(input_stream, loop)
|
34 |
+
saved_frames = []
|
35 |
+
|
36 |
+
for frame in streamer:
|
37 |
+
# getting result include preprocessing, infer, postprocessing for sync infer
|
38 |
+
start_time = time.perf_counter()
|
39 |
+
predictions, _ = self.model(frame)
|
40 |
+
output = self.visualizer.draw(frame, predictions)
|
41 |
+
self.visualizer.show(output)
|
42 |
+
if output is not None:
|
43 |
+
saved_frames.append(output)
|
44 |
+
if self.visualizer.is_quit():
|
45 |
+
break
|
46 |
+
# visualize video not faster than the original FPS
|
47 |
+
self.visualizer.video_delay(time.perf_counter() - start_time, streamer)
|
48 |
+
|
49 |
+
dump_frames(saved_frames, self.visualizer.output, input_stream, streamer)
|
deployments/deployment/Instance segmentation task/python/demo_package/model_wrapper.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""ModelContainer class used for loading the model in the model wrapper."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from enum import Enum
|
9 |
+
from typing import TYPE_CHECKING, Any, NamedTuple
|
10 |
+
|
11 |
+
from model_api.adapters import OpenvinoAdapter, create_core
|
12 |
+
from model_api.models import Model
|
13 |
+
|
14 |
+
from .utils import get_model_path, get_parameters
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from model_api.tilers import DetectionTiler, InstanceSegmentationTiler
|
21 |
+
|
22 |
+
|
23 |
+
class TaskType(str, Enum):
|
24 |
+
"""OTX task type definition."""
|
25 |
+
|
26 |
+
CLASSIFICATION = "CLASSIFICATION"
|
27 |
+
DETECTION = "DETECTION"
|
28 |
+
INSTANCE_SEGMENTATION = "INSTANCE_SEGMENTATION"
|
29 |
+
SEGMENTATION = "SEGMENTATION"
|
30 |
+
|
31 |
+
|
32 |
+
class ModelWrapper:
|
33 |
+
"""Class for storing the model wrapper based on Model API and needed parameters of model.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
model_dir (Path): path to model directory
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, model_dir: Path, device: str = "CPU") -> None:
|
40 |
+
model_adapter = OpenvinoAdapter(create_core(), get_model_path(model_dir / "model.xml"), device=device)
|
41 |
+
if not (model_dir / "config.json").exists():
|
42 |
+
msg = "config.json doesn't exist in the model directory."
|
43 |
+
raise RuntimeError(msg)
|
44 |
+
self.parameters = get_parameters(model_dir / "config.json")
|
45 |
+
self._labels = self.parameters["model_parameters"]["labels"]
|
46 |
+
self._task_type = TaskType[self.parameters["task_type"].upper()]
|
47 |
+
|
48 |
+
# labels for modelAPI wrappers can be empty, because unused in pre- and postprocessing
|
49 |
+
self.model_parameters = self.parameters["model_parameters"]
|
50 |
+
|
51 |
+
# model already contains correct labels
|
52 |
+
self.model_parameters.pop("labels")
|
53 |
+
|
54 |
+
self.core_model = Model.create_model(
|
55 |
+
model_adapter,
|
56 |
+
self.parameters["model_type"],
|
57 |
+
self.model_parameters,
|
58 |
+
preload=True,
|
59 |
+
)
|
60 |
+
self.tiler = self.setup_tiler(model_dir, device)
|
61 |
+
|
62 |
+
def setup_tiler(
|
63 |
+
self,
|
64 |
+
model_dir: Path,
|
65 |
+
device: str,
|
66 |
+
) -> DetectionTiler | InstanceSegmentationTiler | None:
|
67 |
+
"""Set up tiler for model.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
model_dir (str): model directory
|
71 |
+
device (str): device to run model on
|
72 |
+
Returns:
|
73 |
+
Optional: type of tiler or None
|
74 |
+
"""
|
75 |
+
if not self.parameters.get("tiling_parameters") or not self.parameters["tiling_parameters"]["enable_tiling"]:
|
76 |
+
return None
|
77 |
+
|
78 |
+
msg = "Tiling has not been implemented yet"
|
79 |
+
raise NotImplementedError(msg)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def task_type(self) -> TaskType:
|
83 |
+
"""Task type property."""
|
84 |
+
return self._task_type
|
85 |
+
|
86 |
+
@property
|
87 |
+
def labels(self) -> dict:
|
88 |
+
"""Labels property."""
|
89 |
+
return self._labels
|
90 |
+
|
91 |
+
def infer(self, frame: np.ndarray) -> tuple[NamedTuple, dict]:
|
92 |
+
"""Infer with original image.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
frame: np.ndarray, input image
|
96 |
+
Returns:
|
97 |
+
predictions: NamedTuple, prediction
|
98 |
+
frame_meta: Dict, dict with original shape
|
99 |
+
"""
|
100 |
+
# getting result include preprocessing, infer, postprocessing for sync infer
|
101 |
+
predictions = self.core_model(frame)
|
102 |
+
frame_meta = {"original_shape": frame.shape}
|
103 |
+
|
104 |
+
return predictions, frame_meta
|
105 |
+
|
106 |
+
def infer_tile(self, frame: np.ndarray) -> tuple[NamedTuple, dict]:
|
107 |
+
"""Infer by patching full image to tiles.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
frame: np.ndarray - input image
|
111 |
+
Returns:
|
112 |
+
Tuple[NamedTuple, Dict]: prediction and original shape
|
113 |
+
"""
|
114 |
+
if self.tiler is None:
|
115 |
+
msg = "Tiler is not set"
|
116 |
+
raise RuntimeError(msg)
|
117 |
+
detections = self.tiler(frame)
|
118 |
+
return detections, {"original_shape": frame.shape}
|
119 |
+
|
120 |
+
def __call__(self, input_data: np.ndarray) -> tuple[Any, dict]:
|
121 |
+
"""Call the ModelWrapper class.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
input_data (np.ndarray): The input image.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
Tuple[Any, dict]: A tuple containing predictions and the meta information.
|
128 |
+
"""
|
129 |
+
if self.tiler is not None:
|
130 |
+
return self.infer_tile(input_data)
|
131 |
+
return self.infer(input_data)
|
deployments/deployment/Instance segmentation task/python/demo_package/streamer/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Initialization of streamer."""
|
5 |
+
|
6 |
+
from .streamer import (
|
7 |
+
BaseStreamer,
|
8 |
+
CameraStreamer,
|
9 |
+
DirStreamer,
|
10 |
+
ImageStreamer,
|
11 |
+
ThreadedStreamer,
|
12 |
+
VideoStreamer,
|
13 |
+
get_streamer,
|
14 |
+
)
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"CameraStreamer",
|
18 |
+
"DirStreamer",
|
19 |
+
"ImageStreamer",
|
20 |
+
"ThreadedStreamer",
|
21 |
+
"VideoStreamer",
|
22 |
+
"BaseStreamer",
|
23 |
+
"get_streamer",
|
24 |
+
]
|
deployments/deployment/Instance segmentation task/python/demo_package/streamer/streamer.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Streamer for reading input."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import abc
|
9 |
+
import contextlib
|
10 |
+
import multiprocessing
|
11 |
+
import os
|
12 |
+
import queue
|
13 |
+
import sys
|
14 |
+
from enum import Enum
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import TYPE_CHECKING, Iterator
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
import cv2
|
22 |
+
|
23 |
+
|
24 |
+
class MediaType(Enum):
|
25 |
+
"""This Enum represents the types of input."""
|
26 |
+
|
27 |
+
IMAGE = 1
|
28 |
+
DIR = 2
|
29 |
+
VIDEO = 3
|
30 |
+
CAMERA = 4
|
31 |
+
|
32 |
+
|
33 |
+
class BaseStreamer(metaclass=abc.ABCMeta):
|
34 |
+
"""Base Streamer interface to implement Image, Video and Camera streamers."""
|
35 |
+
|
36 |
+
@abc.abstractmethod
|
37 |
+
def __init__(self, input_path: str, loop: bool = False) -> None:
|
38 |
+
"""Initialize the streamer object.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
input_path (str): path to the input stream
|
42 |
+
loop (bool, optional): whether to loop the stream or not. Defaults to False.
|
43 |
+
"""
|
44 |
+
raise NotImplementedError
|
45 |
+
|
46 |
+
@abc.abstractmethod
|
47 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
48 |
+
"""Iterate through the streamer object that is a Python Generator object.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
np.ndarray: Yield the image or video frame.
|
52 |
+
"""
|
53 |
+
raise NotImplementedError
|
54 |
+
|
55 |
+
@abc.abstractmethod
|
56 |
+
def get_type(self) -> MediaType:
|
57 |
+
"""Get type of streamer.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
MediaType: type of streamer.
|
61 |
+
"""
|
62 |
+
raise NotImplementedError
|
63 |
+
|
64 |
+
def fps(self) -> float:
|
65 |
+
"""Returns a frequency of getting images from source."""
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
|
69 |
+
def _process_run(streamer: BaseStreamer, buffer: multiprocessing.Queue) -> None:
|
70 |
+
"""Private function that is run by the thread.
|
71 |
+
|
72 |
+
Waits for the buffer to gain space for timeout seconds while it is full.
|
73 |
+
If no space was available within this time the function will exit
|
74 |
+
|
75 |
+
streamer (BaseStreamer): The streamer to retrieve frames from
|
76 |
+
buffer (multiprocessing.Queue): The buffer to place the retrieved frames in
|
77 |
+
"""
|
78 |
+
for frame in streamer:
|
79 |
+
buffer.put(frame)
|
80 |
+
|
81 |
+
|
82 |
+
class ThreadedStreamer(BaseStreamer):
|
83 |
+
"""Runs a BaseStreamer on a separate thread.
|
84 |
+
|
85 |
+
streamer (BaseStreamer): The streamer to run on a thread
|
86 |
+
buffer_size (int): Number of frame to buffer internally. Defaults to 2.
|
87 |
+
|
88 |
+
Example:
|
89 |
+
>>> streamer = VideoStreamer(path="../demo.mp4")
|
90 |
+
>>> threaded_streamer = ThreadedStreamer(streamer)
|
91 |
+
>>> for frame in threaded_streamer:
|
92 |
+
... pass
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(self, streamer: BaseStreamer, buffer_size: int = 2) -> None:
|
96 |
+
self.buffer_size = buffer_size
|
97 |
+
self.streamer = streamer
|
98 |
+
|
99 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
100 |
+
"""Get frames from streamer and yield them.
|
101 |
+
|
102 |
+
Yields:
|
103 |
+
Iterator[np.ndarray]: Yield the image or video frame.
|
104 |
+
"""
|
105 |
+
buffer: multiprocessing.Queue = multiprocessing.Queue(maxsize=self.buffer_size)
|
106 |
+
process = multiprocessing.Process(target=_process_run, args=(self.streamer, buffer))
|
107 |
+
# Make thread a daemon so that it will exit when the main program exits as well
|
108 |
+
process.daemon = True
|
109 |
+
process.start()
|
110 |
+
|
111 |
+
try:
|
112 |
+
with contextlib.suppress(queue.Empty):
|
113 |
+
while process.is_alive() or not buffer.empty():
|
114 |
+
yield buffer.get(timeout=0.1)
|
115 |
+
except GeneratorExit:
|
116 |
+
process.terminate()
|
117 |
+
finally:
|
118 |
+
process.join(timeout=0.1)
|
119 |
+
# The kill() function is only available in Python 3.7.
|
120 |
+
# Skip it if running an older Python version.
|
121 |
+
if sys.version_info >= (3, 7) and process.exitcode is None:
|
122 |
+
process.kill()
|
123 |
+
|
124 |
+
def get_type(self) -> MediaType:
|
125 |
+
"""Get type of internal streamer.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
MediaType: type of internal streamer.
|
129 |
+
"""
|
130 |
+
return self.streamer.get_type()
|
131 |
+
|
132 |
+
|
133 |
+
class VideoStreamer(BaseStreamer):
|
134 |
+
"""Video Streamer.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
path: Path to the video file.
|
138 |
+
|
139 |
+
Example:
|
140 |
+
>>> streamer = VideoStreamer(path="../demo.mp4")
|
141 |
+
... for frame in streamer:
|
142 |
+
... pass
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(self, input_path: str, loop: bool = False) -> None:
|
146 |
+
self.media_type = MediaType.VIDEO
|
147 |
+
self.loop = loop
|
148 |
+
self.cap = cv2.VideoCapture()
|
149 |
+
status = self.cap.open(input_path)
|
150 |
+
if not status:
|
151 |
+
msg = f"Can't open the video from {input_path}"
|
152 |
+
raise RuntimeError(msg)
|
153 |
+
|
154 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
155 |
+
"""Iterates over frames of the video.
|
156 |
+
|
157 |
+
If self.loop is set to True, the video will loop infinitely.
|
158 |
+
"""
|
159 |
+
while True:
|
160 |
+
status, image = self.cap.read()
|
161 |
+
if status:
|
162 |
+
yield cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
163 |
+
elif self.loop:
|
164 |
+
self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
165 |
+
else:
|
166 |
+
break
|
167 |
+
|
168 |
+
def fps(self) -> float:
|
169 |
+
"""Returns a frequency of getting images from source."""
|
170 |
+
return self.cap.get(cv2.CAP_PROP_FPS)
|
171 |
+
|
172 |
+
def get_type(self) -> MediaType:
|
173 |
+
"""Returns the type of media."""
|
174 |
+
return MediaType.VIDEO
|
175 |
+
|
176 |
+
|
177 |
+
class CameraStreamer(BaseStreamer):
|
178 |
+
"""Stream video frames from camera.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
camera_device (int): Camera device index e.g, 0, 1
|
182 |
+
|
183 |
+
Example:
|
184 |
+
>>> streamer = CameraStreamer(camera_device=0)
|
185 |
+
... for frame in streamer:
|
186 |
+
... cv2.imshow("Window", frame)
|
187 |
+
... if ord("q") == cv2.waitKey(1):
|
188 |
+
... break
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(self, camera_device: str = "0") -> None:
|
192 |
+
self.media_type = MediaType.CAMERA
|
193 |
+
try:
|
194 |
+
self.stream = cv2.VideoCapture(int(camera_device))
|
195 |
+
except ValueError as err:
|
196 |
+
msg = f"Can't find the camera {camera_device}"
|
197 |
+
raise ValueError(msg) from err
|
198 |
+
|
199 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
200 |
+
"""Read video and yield the frame.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
stream: Video stream captured via OpenCV's VideoCapture
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Individual frame
|
207 |
+
"""
|
208 |
+
while True:
|
209 |
+
frame_available, frame = self.stream.read()
|
210 |
+
if not frame_available:
|
211 |
+
break
|
212 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
213 |
+
yield frame
|
214 |
+
|
215 |
+
self.stream.release()
|
216 |
+
|
217 |
+
def get_type(self) -> MediaType:
|
218 |
+
"""Returns the type of media."""
|
219 |
+
return MediaType.CAMERA
|
220 |
+
|
221 |
+
|
222 |
+
class ImageStreamer(BaseStreamer):
|
223 |
+
"""Stream from image file.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
input_path (str): Path to an image.
|
227 |
+
loop (bool): Whether to loop through the image or not. Defaults to False.
|
228 |
+
|
229 |
+
Example:
|
230 |
+
>>> streamer = ImageStreamer(path="../images")
|
231 |
+
... for frame in streamer:
|
232 |
+
... cv2.imshow("Window", frame)
|
233 |
+
... cv2.waitKey(0)
|
234 |
+
"""
|
235 |
+
|
236 |
+
def __init__(self, input_path: str, loop: bool = False) -> None:
|
237 |
+
self.loop = loop
|
238 |
+
self.media_type = MediaType.IMAGE
|
239 |
+
if not Path(input_path).is_file():
|
240 |
+
msg = f"Can't find the image by {input_path}"
|
241 |
+
raise RuntimeError(msg)
|
242 |
+
self.image = cv2.imread(input_path, cv2.IMREAD_COLOR)
|
243 |
+
if self.image is None:
|
244 |
+
msg = f"Can't open the image from {input_path}"
|
245 |
+
raise RuntimeError(msg)
|
246 |
+
self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
|
247 |
+
|
248 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
249 |
+
"""If loop is True, yield the image again and again."""
|
250 |
+
if not self.loop:
|
251 |
+
yield self.image
|
252 |
+
else:
|
253 |
+
while True:
|
254 |
+
yield self.image
|
255 |
+
|
256 |
+
def get_type(self) -> MediaType:
|
257 |
+
"""Returns the type of the streamer."""
|
258 |
+
return MediaType.IMAGE
|
259 |
+
|
260 |
+
|
261 |
+
class DirStreamer(BaseStreamer):
|
262 |
+
"""Stream from directory of images.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
path: Path to directory.
|
266 |
+
|
267 |
+
Example:
|
268 |
+
>>> streamer = DirStreamer(path="../images")
|
269 |
+
... for frame in streamer:
|
270 |
+
... cv2.imshow("Window", frame)
|
271 |
+
... cv2.waitKey(0)
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, input_path: str, loop: bool = False) -> None:
|
275 |
+
self.loop = loop
|
276 |
+
self.media_type = MediaType.DIR
|
277 |
+
self.dir = Path(input_path)
|
278 |
+
if not self.dir.is_dir():
|
279 |
+
msg = f"Can't find the dir by {input_path}"
|
280 |
+
raise RuntimeError(msg)
|
281 |
+
self.names = sorted(os.listdir(self.dir))
|
282 |
+
if not self.names:
|
283 |
+
msg = f"The dir {input_path} is empty"
|
284 |
+
raise RuntimeError(msg)
|
285 |
+
self.file_id = 0
|
286 |
+
for name in self.names:
|
287 |
+
filename = self.dir / name
|
288 |
+
image = cv2.imread(str(filename), cv2.IMREAD_COLOR)
|
289 |
+
if image is not None:
|
290 |
+
return
|
291 |
+
msg = f"Can't read the first image from {input_path}"
|
292 |
+
raise RuntimeError(msg)
|
293 |
+
|
294 |
+
def __iter__(self) -> Iterator[np.ndarray]:
|
295 |
+
"""Iterates over the images in a directory.
|
296 |
+
|
297 |
+
If self.loop is True, it reiterates again from the first image in the directory.
|
298 |
+
"""
|
299 |
+
while self.file_id < len(self.names):
|
300 |
+
filename = self.dir / self.names[self.file_id]
|
301 |
+
image = cv2.imread(str(filename), cv2.IMREAD_COLOR)
|
302 |
+
if self.file_id < len(self.names) - 1:
|
303 |
+
self.file_id = self.file_id + 1
|
304 |
+
else:
|
305 |
+
self.file_id = self.file_id + 1 if not self.loop else 0
|
306 |
+
if image is not None:
|
307 |
+
yield cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
308 |
+
|
309 |
+
def get_type(self) -> MediaType:
|
310 |
+
"""Returns the type of the streamer."""
|
311 |
+
return MediaType.DIR
|
312 |
+
|
313 |
+
|
314 |
+
def get_streamer(
|
315 |
+
input_stream: str,
|
316 |
+
loop: bool = False,
|
317 |
+
threaded: bool = False,
|
318 |
+
) -> BaseStreamer:
|
319 |
+
"""Get streamer object based on the file path or camera device index provided.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
input_stream (str): Path to file or directory or index for camera.
|
323 |
+
loop (bool): Enable reading the input in a loop. Defaults to False.
|
324 |
+
threaded (bool): Run streaming on a separate thread. Threaded streaming option. Defaults to False.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
BaseStreamer: Streamer object.
|
328 |
+
"""
|
329 |
+
errors: list[Exception] = []
|
330 |
+
streamer_types = (ImageStreamer, DirStreamer, VideoStreamer)
|
331 |
+
for reader in streamer_types:
|
332 |
+
try:
|
333 |
+
streamer = reader(input_stream, loop) # type: ignore [abstract]
|
334 |
+
return ThreadedStreamer(streamer) if threaded else streamer
|
335 |
+
except RuntimeError as error: # noqa: PERF203
|
336 |
+
errors.append(error)
|
337 |
+
try:
|
338 |
+
streamer = CameraStreamer(input_stream)
|
339 |
+
return ThreadedStreamer(streamer) if threaded else streamer
|
340 |
+
except RuntimeError as error:
|
341 |
+
errors.append(error)
|
342 |
+
|
343 |
+
if errors:
|
344 |
+
raise RuntimeError(errors)
|
345 |
+
|
346 |
+
sys.exit(1)
|
deployments/deployment/Instance segmentation task/python/demo_package/utils.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Utils for demo."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import json
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
from .visualizers import (
|
12 |
+
BaseVisualizer,
|
13 |
+
ClassificationVisualizer,
|
14 |
+
InstanceSegmentationVisualizer,
|
15 |
+
ObjectDetectionVisualizer,
|
16 |
+
SemanticSegmentationVisualizer,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def get_model_path(path: Path | None) -> Path:
|
21 |
+
"""Get path to model."""
|
22 |
+
model_path = path
|
23 |
+
if model_path is None:
|
24 |
+
model_path = Path(__file__).parent / "openvino.xml"
|
25 |
+
if not model_path.exists():
|
26 |
+
msg = "The path to the model was not found."
|
27 |
+
raise OSError(msg)
|
28 |
+
|
29 |
+
return model_path
|
30 |
+
|
31 |
+
|
32 |
+
def get_parameters(path: Path | None) -> dict:
|
33 |
+
"""Get hyper parameters to creating model."""
|
34 |
+
parameters_path = path
|
35 |
+
if parameters_path is None:
|
36 |
+
parameters_path = Path(__file__).parent / "config.json"
|
37 |
+
if not parameters_path.exists():
|
38 |
+
msg = "The path to the config was not found."
|
39 |
+
raise OSError(msg)
|
40 |
+
|
41 |
+
with Path.open(parameters_path, encoding="utf8") as file:
|
42 |
+
return json.load(file)
|
43 |
+
|
44 |
+
|
45 |
+
def create_visualizer(
|
46 |
+
task_type: str,
|
47 |
+
labels: list,
|
48 |
+
no_show: bool = False,
|
49 |
+
output: str = "./outputs",
|
50 |
+
) -> BaseVisualizer | None:
|
51 |
+
"""Create visualizer according to kind of task."""
|
52 |
+
if task_type == "CLASSIFICATION":
|
53 |
+
return ClassificationVisualizer(window_name="Result", no_show=no_show, output=output)
|
54 |
+
if task_type == "SEGMENTATION":
|
55 |
+
return SemanticSegmentationVisualizer(window_name="Result", labels=labels, no_show=no_show, output=output)
|
56 |
+
if task_type == "INSTANCE_SEGMENTATION":
|
57 |
+
return InstanceSegmentationVisualizer(window_name="Result", labels=labels, no_show=no_show, output=output)
|
58 |
+
if task_type == "DETECTION":
|
59 |
+
return ObjectDetectionVisualizer(window_name="Result", labels=labels, no_show=no_show, output=output)
|
60 |
+
msg = "Visualizer for f{task_type} is not implemented"
|
61 |
+
raise NotImplementedError(msg)
|
deployments/deployment/Instance segmentation task/python/demo_package/visualizers/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Initialization of visualizers."""
|
5 |
+
|
6 |
+
from .vis_utils import dump_frames
|
7 |
+
from .visualizer import (
|
8 |
+
BaseVisualizer,
|
9 |
+
ClassificationVisualizer,
|
10 |
+
InstanceSegmentationVisualizer,
|
11 |
+
ObjectDetectionVisualizer,
|
12 |
+
SemanticSegmentationVisualizer,
|
13 |
+
)
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"BaseVisualizer",
|
17 |
+
"dump_frames",
|
18 |
+
"ClassificationVisualizer",
|
19 |
+
"SemanticSegmentationVisualizer",
|
20 |
+
"InstanceSegmentationVisualizer",
|
21 |
+
"ObjectDetectionVisualizer",
|
22 |
+
]
|
deployments/deployment/Instance segmentation task/python/demo_package/visualizers/vis_utils.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""This module implements activation map."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import colorsys
|
9 |
+
import random
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
|
16 |
+
def get_actmap(
|
17 |
+
saliency_map: np.ndarray,
|
18 |
+
output_res: tuple | list,
|
19 |
+
) -> np.ndarray:
|
20 |
+
"""Get activation map (heatmap) from saliency map.
|
21 |
+
|
22 |
+
It will return activation map from saliency map
|
23 |
+
|
24 |
+
Args:
|
25 |
+
saliency_map (np.ndarray): Saliency map with pixel values from 0-255
|
26 |
+
output_res (Union[tuple, list]): Output resolution
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
saliency_map (np.ndarray): [H, W, 3] colormap, more red means more salient
|
30 |
+
|
31 |
+
"""
|
32 |
+
if len(saliency_map.shape) == 3:
|
33 |
+
saliency_map = saliency_map[0]
|
34 |
+
|
35 |
+
saliency_map = cv2.resize(saliency_map, output_res)
|
36 |
+
return cv2.applyColorMap(saliency_map, cv2.COLORMAP_JET)
|
37 |
+
|
38 |
+
|
39 |
+
def get_input_names_list(input_path: str | int, capture: cv2.VideoCapture) -> list[str]:
|
40 |
+
"""Lists the filenames of all inputs for demo."""
|
41 |
+
# Web camera input
|
42 |
+
if isinstance(input_path, int):
|
43 |
+
return []
|
44 |
+
if "DIR" in str(capture.get_type()):
|
45 |
+
return [f.name for f in Path(input_path).iterdir() if f.is_file()]
|
46 |
+
return [Path(input_path).name]
|
47 |
+
|
48 |
+
|
49 |
+
def dump_frames(saved_frames: list, output: str, input_path: str | int, capture: cv2.VideoCapture) -> None:
|
50 |
+
"""Saves images/videos with predictions from saved_frames to output folder with proper names."""
|
51 |
+
# If no frames are saved, return
|
52 |
+
if not saved_frames:
|
53 |
+
return
|
54 |
+
|
55 |
+
# Create the output folder if it doesn't exist
|
56 |
+
output_path = Path(output)
|
57 |
+
if not output_path.exists():
|
58 |
+
output_path.mkdir(parents=True)
|
59 |
+
|
60 |
+
# Get the list of input names
|
61 |
+
filenames = get_input_names_list(input_path, capture)
|
62 |
+
|
63 |
+
# If the input is a video, save it as video
|
64 |
+
if "VIDEO" in str(capture.get_type()):
|
65 |
+
filename = filenames[0]
|
66 |
+
w, h, _ = saved_frames[0].shape
|
67 |
+
video_path = str(output_path / filename)
|
68 |
+
codec = cv2.VideoWriter_fourcc(*"mp4v")
|
69 |
+
out = cv2.VideoWriter(video_path, codec, capture.fps(), (h, w))
|
70 |
+
for frame in saved_frames:
|
71 |
+
out.write(frame)
|
72 |
+
out.release()
|
73 |
+
print(f"Video was saved to {video_path}")
|
74 |
+
# If the input is not a video, save each frame as an image
|
75 |
+
else:
|
76 |
+
if len(filenames) != len(saved_frames):
|
77 |
+
filenames = [f"output_{i}.jpeg" for i, _ in enumerate(saved_frames)]
|
78 |
+
for filename, frame in zip(filenames, saved_frames):
|
79 |
+
image_path = str(output_path / filename)
|
80 |
+
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
81 |
+
cv2.imwrite(image_path, frame)
|
82 |
+
print(f"Image was saved to {image_path}")
|
83 |
+
|
84 |
+
|
85 |
+
class ColorPalette:
|
86 |
+
"""Represents a palette of colors."""
|
87 |
+
|
88 |
+
def __init__(self, num_classes: int, rng: random.Random | None = None) -> None:
|
89 |
+
"""Initialize the ColorPalette.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
- num_classes (int): The number of classes.
|
93 |
+
- rng (Optional[random.Random]): The random number generator.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
None
|
97 |
+
"""
|
98 |
+
if num_classes <= 0:
|
99 |
+
msg = "ColorPalette accepts only the positive number of colors"
|
100 |
+
raise ValueError(msg)
|
101 |
+
if rng is None:
|
102 |
+
rng = random.Random(0xACE) # nosec B311 # disable random check
|
103 |
+
|
104 |
+
candidates_num = 100
|
105 |
+
hsv_colors = [(1.0, 1.0, 1.0)]
|
106 |
+
for _ in range(1, num_classes):
|
107 |
+
colors_candidates = [
|
108 |
+
(rng.random(), rng.uniform(0.8, 1.0), rng.uniform(0.5, 1.0)) for _ in range(candidates_num)
|
109 |
+
]
|
110 |
+
min_distances = [self._min_distance(hsv_colors, c) for c in colors_candidates]
|
111 |
+
arg_max = np.argmax(min_distances)
|
112 |
+
hsv_colors.append(colors_candidates[arg_max])
|
113 |
+
|
114 |
+
self.palette = [self.hsv2rgb(*hsv) for hsv in hsv_colors]
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def _dist(c1: tuple[float, float, float], c2: tuple[float, float, float]) -> float:
|
118 |
+
"""Calculate the distance between two colors in 3D space.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
- c1 (Tuple[float, float, float]): Tuple representing the first RGB color.
|
122 |
+
- c2 (Tuple[float, float, float]): Tuple representing the second RGB color.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
float: The distance between the two colors.
|
126 |
+
"""
|
127 |
+
dh = min(abs(c1[0] - c2[0]), 1 - abs(c1[0] - c2[0])) * 2
|
128 |
+
ds = abs(c1[1] - c2[1])
|
129 |
+
dv = abs(c1[2] - c2[2])
|
130 |
+
return dh * dh + ds * ds + dv * dv
|
131 |
+
|
132 |
+
@classmethod
|
133 |
+
def _min_distance(
|
134 |
+
cls,
|
135 |
+
colors_set: list[tuple[float, float, float]],
|
136 |
+
color_candidate: tuple[float, float, float],
|
137 |
+
) -> float:
|
138 |
+
"""Calculate the minimum distance between color_candidate and colors_set.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
- colors_set: List of tuples representing RGB colors.
|
142 |
+
- color_candidate: Tuple representing an RGB color.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
- float: The minimum distance between color_candidate and colors_set.
|
146 |
+
"""
|
147 |
+
distances = [cls._dist(o, color_candidate) for o in colors_set]
|
148 |
+
return min(distances)
|
149 |
+
|
150 |
+
def to_numpy_array(self) -> np.ndarray:
|
151 |
+
"""Convert the palette to a NumPy array.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
np.ndarray: The palette as a NumPy array.
|
155 |
+
"""
|
156 |
+
return np.array(self.palette)
|
157 |
+
|
158 |
+
@staticmethod
|
159 |
+
def hsv2rgb(h: float, s: float, v: float) -> tuple[int, int, int]:
|
160 |
+
"""Convert HSV color to RGB color.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
- h (float): Hue.
|
164 |
+
- s (float): Saturation.
|
165 |
+
- v (float): Value.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Tuple[int, int, int]: RGB color.
|
169 |
+
"""
|
170 |
+
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
171 |
+
return int(r * 255), int(g * 255), int(b * 255)
|
172 |
+
|
173 |
+
def __getitem__(self, n: int) -> tuple[int, int, int]:
|
174 |
+
"""Get the color at index n.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
- n (int): Index.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
Tuple[int, int, int]: RGB color.
|
181 |
+
"""
|
182 |
+
return self.palette[n % len(self.palette)]
|
183 |
+
|
184 |
+
def __len__(self) -> int:
|
185 |
+
"""Returns the number of colors in the palette.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
int: The number of colors in the palette.
|
189 |
+
"""
|
190 |
+
return len(self.palette)
|
deployments/deployment/Instance segmentation task/python/demo_package/visualizers/visualizer.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""Visualizer for results of prediction."""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
import logging as log
|
9 |
+
import time
|
10 |
+
from typing import TYPE_CHECKING, NamedTuple
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
from model_api.performance_metrics import put_highlighted_text
|
15 |
+
|
16 |
+
from .vis_utils import ColorPalette
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from demo_package.streamer import BaseStreamer
|
20 |
+
from model_api.models.utils import (
|
21 |
+
ClassificationResult,
|
22 |
+
DetectionResult,
|
23 |
+
InstanceSegmentationResult,
|
24 |
+
SegmentedObject,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
class BaseVisualizer:
|
29 |
+
"""Base class for visualizators."""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
window_name: str | None = None,
|
34 |
+
no_show: bool = False,
|
35 |
+
delay: int | None = None,
|
36 |
+
output: str = "./outputs",
|
37 |
+
) -> None:
|
38 |
+
"""Base class for visualizators.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
window_name (str]): The name of the window. Defaults to None.
|
42 |
+
no_show (bool): Flag to indicate whether to show the window. Defaults to False.
|
43 |
+
delay (int]): The delay in seconds. Defaults to None.
|
44 |
+
output (str]): The output directory. Defaults to "./outputs".
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
None
|
48 |
+
"""
|
49 |
+
self.window_name = "Window" if window_name is None else window_name
|
50 |
+
|
51 |
+
self.delay = delay
|
52 |
+
self.no_show = no_show
|
53 |
+
if delay is None:
|
54 |
+
self.delay = 1
|
55 |
+
self.output = output
|
56 |
+
|
57 |
+
def draw(
|
58 |
+
self,
|
59 |
+
frame: np.ndarray,
|
60 |
+
predictions: NamedTuple,
|
61 |
+
) -> np.ndarray:
|
62 |
+
"""Draw annotations on the image.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
frame: Input image
|
66 |
+
predictions: Annotations to be drawn on the input image
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Output image with annotations.
|
70 |
+
"""
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
def show(self, image: np.ndarray) -> None:
|
74 |
+
"""Show result image.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
image (np.ndarray): Image to be shown.
|
78 |
+
"""
|
79 |
+
if not self.no_show:
|
80 |
+
cv2.imshow(self.window_name, image)
|
81 |
+
|
82 |
+
def is_quit(self) -> bool:
|
83 |
+
"""Check user wish to quit."""
|
84 |
+
if self.no_show:
|
85 |
+
return False
|
86 |
+
|
87 |
+
return ord("q") == cv2.waitKey(self.delay)
|
88 |
+
|
89 |
+
def video_delay(self, elapsed_time: float, streamer: BaseStreamer) -> None:
|
90 |
+
"""Check if video frames were inferenced faster than the original video FPS and delay visualizer if so.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
elapsed_time (float): Time spent on frame inference
|
94 |
+
streamer (BaseStreamer): Streamer object
|
95 |
+
"""
|
96 |
+
if self.no_show:
|
97 |
+
return
|
98 |
+
if "VIDEO" in str(streamer.get_type()):
|
99 |
+
fps_num = streamer.fps()
|
100 |
+
orig_frame_time = 1 / fps_num
|
101 |
+
if elapsed_time < orig_frame_time:
|
102 |
+
time.sleep(orig_frame_time - elapsed_time)
|
103 |
+
|
104 |
+
|
105 |
+
class ClassificationVisualizer(BaseVisualizer):
|
106 |
+
"""Visualize the predicted classification labels by drawing the annotations on the input image.
|
107 |
+
|
108 |
+
Example:
|
109 |
+
>>> predictions = inference_model.predict(frame)
|
110 |
+
>>> output = visualizer.draw(frame, predictions)
|
111 |
+
>>> visualizer.show(output)
|
112 |
+
"""
|
113 |
+
|
114 |
+
def draw(
|
115 |
+
self,
|
116 |
+
frame: np.ndarray,
|
117 |
+
predictions: ClassificationResult,
|
118 |
+
) -> np.ndarray:
|
119 |
+
"""Draw classification annotations on the image.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
image: Input image
|
123 |
+
annotation: Annotations to be drawn on the input image
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
Output image with annotations.
|
127 |
+
"""
|
128 |
+
predictions = predictions.top_labels
|
129 |
+
if not any(predictions):
|
130 |
+
log.warning("There are no predictions.")
|
131 |
+
return frame
|
132 |
+
|
133 |
+
class_label = predictions[0][1]
|
134 |
+
font_scale = 0.7
|
135 |
+
label_height = cv2.getTextSize(class_label, cv2.FONT_HERSHEY_COMPLEX, font_scale, 2)[0][1]
|
136 |
+
initial_labels_pos = frame.shape[0] - label_height * (int(1.5 * len(predictions)) + 1)
|
137 |
+
|
138 |
+
if initial_labels_pos < 0:
|
139 |
+
initial_labels_pos = label_height
|
140 |
+
log.warning("Too much labels to display on this frame, some will be omitted")
|
141 |
+
offset_y = initial_labels_pos
|
142 |
+
|
143 |
+
header = "Label: Score:"
|
144 |
+
label_width = cv2.getTextSize(header, cv2.FONT_HERSHEY_COMPLEX, font_scale, 2)[0][0]
|
145 |
+
put_highlighted_text(
|
146 |
+
frame,
|
147 |
+
header,
|
148 |
+
(frame.shape[1] - label_width, offset_y),
|
149 |
+
cv2.FONT_HERSHEY_COMPLEX,
|
150 |
+
font_scale,
|
151 |
+
(255, 0, 0),
|
152 |
+
2,
|
153 |
+
)
|
154 |
+
|
155 |
+
for idx, class_label, score in predictions:
|
156 |
+
label = f"{idx}. {class_label} {score:.2f}"
|
157 |
+
label_width = cv2.getTextSize(label, cv2.FONT_HERSHEY_COMPLEX, font_scale, 2)[0][0]
|
158 |
+
offset_y += int(label_height * 1.5)
|
159 |
+
put_highlighted_text(
|
160 |
+
frame,
|
161 |
+
label,
|
162 |
+
(frame.shape[1] - label_width, offset_y),
|
163 |
+
cv2.FONT_HERSHEY_COMPLEX,
|
164 |
+
font_scale,
|
165 |
+
(255, 0, 0),
|
166 |
+
2,
|
167 |
+
)
|
168 |
+
return frame
|
169 |
+
|
170 |
+
|
171 |
+
class SemanticSegmentationVisualizer(BaseVisualizer):
|
172 |
+
"""Visualize the predicted segmentation labels by drawing the annotations on the input image.
|
173 |
+
|
174 |
+
Example:
|
175 |
+
>>> masks = inference_model.predict(frame)
|
176 |
+
>>> output = visualizer.draw(frame, masks)
|
177 |
+
>>> visualizer.show(output)
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
labels: list[str],
|
183 |
+
window_name: str | None = None,
|
184 |
+
no_show: bool = False,
|
185 |
+
delay: int | None = None,
|
186 |
+
output: str = "./outputs",
|
187 |
+
) -> None:
|
188 |
+
"""Semantic segmentation visualizer.
|
189 |
+
|
190 |
+
Draws the segmentation masks on the input image.
|
191 |
+
|
192 |
+
Parameters:
|
193 |
+
labels (List[str]): List of labels.
|
194 |
+
window_name (str | None): Name of the window (default is None).
|
195 |
+
no_show (bool): Flag indicating whether to show the window (default is False).
|
196 |
+
delay (int | None): Delay in milliseconds (default is None).
|
197 |
+
output (str): Output path (default is "./outputs").
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
None
|
201 |
+
"""
|
202 |
+
super().__init__(window_name, no_show, delay, output)
|
203 |
+
self.color_palette = ColorPalette(len(labels)).to_numpy_array()
|
204 |
+
self.color_map = self._create_color_map()
|
205 |
+
|
206 |
+
def _create_color_map(self) -> np.ndarray:
|
207 |
+
classes = self.color_palette[:, ::-1] # RGB to BGR
|
208 |
+
color_map = np.zeros((256, 1, 3), dtype=np.uint8)
|
209 |
+
classes_num = len(classes)
|
210 |
+
color_map[:classes_num, 0, :] = classes
|
211 |
+
color_map[classes_num:, 0, :] = np.random.uniform(0, 255, size=(256 - classes_num, 3))
|
212 |
+
return color_map
|
213 |
+
|
214 |
+
def _apply_color_map(self, input_2d_mask: np.ndarray) -> np.ndarray:
|
215 |
+
input_3d = cv2.merge([input_2d_mask, input_2d_mask, input_2d_mask])
|
216 |
+
return cv2.LUT(input_3d.astype(np.uint8), self.color_map)
|
217 |
+
|
218 |
+
def draw(self, frame: np.ndarray, masks: SegmentedObject) -> np.ndarray:
|
219 |
+
"""Draw segmentation annotations on the image.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
frame: Input image
|
223 |
+
masks: Mask annotations to be drawn on the input image
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
Output image with annotations.
|
227 |
+
"""
|
228 |
+
masks = masks.resultImage
|
229 |
+
output = self._apply_color_map(masks)
|
230 |
+
return cv2.addWeighted(frame, 0.5, output, 0.5, 0)
|
231 |
+
|
232 |
+
|
233 |
+
class ObjectDetectionVisualizer(BaseVisualizer):
|
234 |
+
"""Visualizes object detection annotations on an input image."""
|
235 |
+
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
labels: list[str],
|
239 |
+
window_name: str | None = None,
|
240 |
+
no_show: bool = False,
|
241 |
+
delay: int | None = None,
|
242 |
+
output: str = "./outputs",
|
243 |
+
) -> None:
|
244 |
+
"""Object detection visualizer.
|
245 |
+
|
246 |
+
Draws the object detection annotations on the input image.
|
247 |
+
|
248 |
+
Parameters:
|
249 |
+
labels (List[str]): The list of labels.
|
250 |
+
window_name (str | None): The name of the window. Defaults to None.
|
251 |
+
no_show (bool): Flag to control whether to show the window. Defaults to False.
|
252 |
+
delay (int | None): The delay in milliseconds. Defaults to None.
|
253 |
+
output (str): The output directory. Defaults to "./outputs".
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
None
|
257 |
+
"""
|
258 |
+
super().__init__(window_name, no_show, delay, output)
|
259 |
+
self.labels = labels
|
260 |
+
self.color_palette = ColorPalette(len(labels))
|
261 |
+
|
262 |
+
def draw(
|
263 |
+
self,
|
264 |
+
frame: np.ndarray,
|
265 |
+
predictions: DetectionResult,
|
266 |
+
) -> np.ndarray:
|
267 |
+
"""Draw instance segmentation annotations on the image.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
image: Input image
|
271 |
+
annotation: Annotations to be drawn on the input image
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
Output image with annotations.
|
275 |
+
"""
|
276 |
+
for detection in predictions.objects:
|
277 |
+
class_id = int(detection.id)
|
278 |
+
color = self.color_palette[class_id]
|
279 |
+
det_label = self.color_palette[class_id] if self.labels and len(self.labels) >= class_id else f"#{class_id}"
|
280 |
+
xmin, ymin, xmax, ymax = detection.xmin, detection.ymin, detection.xmax, detection.ymax
|
281 |
+
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), color, 2)
|
282 |
+
cv2.putText(
|
283 |
+
frame,
|
284 |
+
f"{det_label} {detection.score:.1%}",
|
285 |
+
(xmin, ymin - 7),
|
286 |
+
cv2.FONT_HERSHEY_COMPLEX,
|
287 |
+
0.6,
|
288 |
+
color,
|
289 |
+
1,
|
290 |
+
)
|
291 |
+
|
292 |
+
return frame
|
293 |
+
|
294 |
+
|
295 |
+
class InstanceSegmentationVisualizer(BaseVisualizer):
|
296 |
+
"""Visualizes Instance Segmentation annotations on an input image."""
|
297 |
+
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
labels: list[str],
|
301 |
+
window_name: str | None = None,
|
302 |
+
no_show: bool = False,
|
303 |
+
delay: int | None = None,
|
304 |
+
output: str = "./outputs",
|
305 |
+
) -> None:
|
306 |
+
"""Instance segmentation visualizer.
|
307 |
+
|
308 |
+
Draws the instance segmentation annotations on the input image.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
labels (List[str]): The list of labels.
|
312 |
+
window_name (str]): The name of the window. Defaults to None.
|
313 |
+
no_show (bool): A flag to indicate whether to show the window. Defaults to False.
|
314 |
+
delay (int]): The delay in milliseconds. Defaults to None.
|
315 |
+
output (str]): The path to the output directory. Defaults to "./outputs".
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
None
|
319 |
+
"""
|
320 |
+
super().__init__(window_name, no_show, delay, output)
|
321 |
+
self.labels = labels
|
322 |
+
colors_num = len(labels) if labels else 80
|
323 |
+
self.show_boxes = False
|
324 |
+
self.show_scores = True
|
325 |
+
self.palette = ColorPalette(colors_num)
|
326 |
+
|
327 |
+
def draw(
|
328 |
+
self,
|
329 |
+
frame: np.ndarray,
|
330 |
+
predictions: InstanceSegmentationResult,
|
331 |
+
) -> np.ndarray:
|
332 |
+
"""Draw the instance segmentation results on the input frame.
|
333 |
+
|
334 |
+
Args:
|
335 |
+
frame: np.ndarray - The input frame on which to draw the instance segmentation results.
|
336 |
+
predictions: InstanceSegmentationResult - The instance segmentation results to be drawn.
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
np.ndarray - The input frame with the instance segmentation results drawn on it.
|
340 |
+
"""
|
341 |
+
result = frame.copy()
|
342 |
+
output_objects = predictions.segmentedObjects
|
343 |
+
bboxes = [[output.xmin, output.ymin, output.xmax, output.ymax] for output in output_objects]
|
344 |
+
scores = [output.score for output in output_objects]
|
345 |
+
masks = [output.mask for output in output_objects]
|
346 |
+
label_names = [output.str_label for output in output_objects]
|
347 |
+
|
348 |
+
result = self._overlay_masks(result, masks)
|
349 |
+
return self._overlay_labels(result, bboxes, label_names, scores)
|
350 |
+
|
351 |
+
def _overlay_masks(self, image: np.ndarray, masks: list[np.ndarray]) -> np.ndarray:
|
352 |
+
segments_image = image.copy()
|
353 |
+
aggregated_mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
354 |
+
aggregated_colored_mask = np.zeros(image.shape, dtype=np.uint8)
|
355 |
+
all_contours = []
|
356 |
+
|
357 |
+
for i, mask in enumerate(masks):
|
358 |
+
contours = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2]
|
359 |
+
if contours:
|
360 |
+
all_contours.append(contours[0])
|
361 |
+
|
362 |
+
mask_color = self.palette[i]
|
363 |
+
cv2.bitwise_or(aggregated_mask, mask, dst=aggregated_mask)
|
364 |
+
cv2.bitwise_or(aggregated_colored_mask, mask_color, dst=aggregated_colored_mask, mask=mask)
|
365 |
+
|
366 |
+
# Fill the area occupied by all instances with a colored instances mask image
|
367 |
+
cv2.bitwise_and(segments_image, (0, 0, 0), dst=segments_image, mask=aggregated_mask)
|
368 |
+
cv2.bitwise_or(segments_image, aggregated_colored_mask, dst=segments_image, mask=aggregated_mask)
|
369 |
+
|
370 |
+
cv2.addWeighted(image, 0.5, segments_image, 0.5, 0, dst=image)
|
371 |
+
cv2.drawContours(image, all_contours, -1, (0, 0, 0))
|
372 |
+
return image
|
373 |
+
|
374 |
+
def _overlay_boxes(self, image: np.ndarray, boxes: list[np.ndarray], classes: list[int]) -> np.ndarray:
|
375 |
+
for box, class_id in zip(boxes, classes):
|
376 |
+
color = self.palette[class_id]
|
377 |
+
top_left, bottom_right = box[:2], box[2:]
|
378 |
+
image = cv2.rectangle(image, top_left, bottom_right, color, 2)
|
379 |
+
return image
|
380 |
+
|
381 |
+
def _overlay_labels(
|
382 |
+
self,
|
383 |
+
image: np.ndarray,
|
384 |
+
boxes: list[np.ndarray],
|
385 |
+
classes: list[str],
|
386 |
+
scores: list[float],
|
387 |
+
) -> np.ndarray:
|
388 |
+
template = "{}: {:.2f}" if self.show_scores else "{}"
|
389 |
+
|
390 |
+
for box, score, label in zip(boxes, scores, classes):
|
391 |
+
text = template.format(label, score)
|
392 |
+
textsize = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
|
393 |
+
cv2.putText(
|
394 |
+
image,
|
395 |
+
text,
|
396 |
+
(box[0], box[1] + int(textsize[0] / 3)),
|
397 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
398 |
+
0.5,
|
399 |
+
(255, 255, 255),
|
400 |
+
1,
|
401 |
+
)
|
402 |
+
return image
|
deployments/deployment/Instance segmentation task/python/requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
openvino==2024.3.0
|
2 |
+
openvino-model-api==0.2.5
|
3 |
+
numpy==1.26.4
|
deployments/deployment/Instance segmentation task/python/setup.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Intel Corporation
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
"""setup file for demo package."""
|
5 |
+
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
from setuptools import find_packages, setup
|
9 |
+
|
10 |
+
SETUP_DIR = Path(__file__).resolve().parent
|
11 |
+
|
12 |
+
with Path.open(SETUP_DIR / "requirements.txt", encoding="utf8") as f:
|
13 |
+
required = f.read().splitlines()
|
14 |
+
|
15 |
+
packages = find_packages(str(SETUP_DIR))
|
16 |
+
package_dir = {packages[0]: str(SETUP_DIR / packages[0])}
|
17 |
+
|
18 |
+
setup(
|
19 |
+
name=packages[0],
|
20 |
+
version="0.0",
|
21 |
+
author="Intel® Corporation",
|
22 |
+
license="Copyright (c) 2024 Intel Corporation. SPDX-License-Identifier: Apache-2.0",
|
23 |
+
description="Demo based on ModelAPI classes",
|
24 |
+
packages=packages,
|
25 |
+
package_dir=package_dir,
|
26 |
+
package_data={
|
27 |
+
packages[0]: ["*.json"],
|
28 |
+
},
|
29 |
+
install_requires=required,
|
30 |
+
)
|
deployments/deployment/project.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id": "6483114c18fb8c1c529bd149",
|
3 |
+
"name": "eggs!",
|
4 |
+
"creation_time": "2023-06-09T11:47:24.780000+00:00",
|
5 |
+
"creator_id": "dd725a2c-b183-4616-bcf3-0894843fb6a5",
|
6 |
+
"pipeline": {
|
7 |
+
"tasks": [
|
8 |
+
{
|
9 |
+
"id": "6483114c18fb8c1c529bd14a",
|
10 |
+
"title": "Dataset",
|
11 |
+
"task_type": "dataset"
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"id": "6483114c18fb8c1c529bd14d",
|
15 |
+
"title": "Instance segmentation task",
|
16 |
+
"task_type": "instance_segmentation",
|
17 |
+
"labels": [
|
18 |
+
{
|
19 |
+
"id": "6483114c18fb8c1c529bd150",
|
20 |
+
"name": "egg",
|
21 |
+
"is_anomalous": false,
|
22 |
+
"color": "#c9e649ff",
|
23 |
+
"hotkey": "",
|
24 |
+
"is_empty": false,
|
25 |
+
"group": "Instance segmentation labels",
|
26 |
+
"parent_id": null
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"id": "6483114c18fb8c1c529bd154",
|
30 |
+
"name": "Empty",
|
31 |
+
"is_anomalous": false,
|
32 |
+
"color": "#000000ff",
|
33 |
+
"hotkey": "",
|
34 |
+
"is_empty": true,
|
35 |
+
"group": "Empty",
|
36 |
+
"parent_id": null
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"label_schema_id": "6483114c18fb8c1c529bd156"
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"connections": [
|
43 |
+
{
|
44 |
+
"from": "6483114c18fb8c1c529bd14a",
|
45 |
+
"to": "6483114c18fb8c1c529bd14d"
|
46 |
+
}
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"thumbnail": "/api/v1/organizations/0ec46502-f590-4358-afff-a6beb25fe89f/workspaces/97ecb1e9-4367-4bc6-b335-1c6e7aedbf77/projects/6483114c18fb8c1c529bd149/thumbnail",
|
50 |
+
"performance": {
|
51 |
+
"score": 0.9520755876647748,
|
52 |
+
"task_performances": [
|
53 |
+
{
|
54 |
+
"task_id": "6483114c18fb8c1c529bd14d",
|
55 |
+
"score": {
|
56 |
+
"value": 0.9520755876647748,
|
57 |
+
"metric_type": "Dice"
|
58 |
+
}
|
59 |
+
}
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"storage_info": {},
|
63 |
+
"datasets": [
|
64 |
+
{
|
65 |
+
"id": "6483114c18fb8c1c529bd151",
|
66 |
+
"name": "Dataset",
|
67 |
+
"use_for_training": true,
|
68 |
+
"creation_time": "2023-06-09T11:47:24.780000+00:00"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"id": "64898e9c68d5ade57e325981",
|
72 |
+
"name": "Testing set 1",
|
73 |
+
"use_for_training": false,
|
74 |
+
"creation_time": "2023-06-14T09:55:40.186000+00:00"
|
75 |
+
}
|
76 |
+
]
|
77 |
+
}
|
deployments/example_code/demo.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2022 Intel Corporation
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing,
|
10 |
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions
|
13 |
+
# and limitations under the License.
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
from geti_sdk.deployment import Deployment
|
17 |
+
from geti_sdk.utils import show_image_with_annotation_scene
|
18 |
+
|
19 |
+
if __name__ == "__main__":
|
20 |
+
# Step 1: Load the deployment
|
21 |
+
deployment = Deployment.from_folder("../deployment")
|
22 |
+
|
23 |
+
# Step 2: Load the sample image
|
24 |
+
image = cv2.imread("../sample_image.jpg")
|
25 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
26 |
+
|
27 |
+
# Step 3: Send inference model(s) to CPU
|
28 |
+
deployment.load_inference_models(device="CPU")
|
29 |
+
|
30 |
+
# Step 4: Infer image
|
31 |
+
prediction = deployment.infer(image_rgb)
|
32 |
+
|
33 |
+
# Step 5: Visualization
|
34 |
+
show_image_with_annotation_scene(image_rgb, prediction)
|
deployments/example_code/demo_notebook.ipynb
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "86111f81-16f5-46e5-9010-1ef9e05a1571",
|
6 |
+
"metadata": {
|
7 |
+
"copyright": [
|
8 |
+
"INTEL CONFIDENTIAL",
|
9 |
+
"Copyright (C) 2022 Intel Corporation",
|
10 |
+
"This software and the related documents are Intel copyrighted materials, and your use of them is governed by",
|
11 |
+
"the express license under which they were provided to you (\"License\"). Unless the License provides otherwise,",
|
12 |
+
"you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents",
|
13 |
+
"without Intel's prior written permission.",
|
14 |
+
"This software and the related documents are provided as is, with no express or implied warranties,",
|
15 |
+
"other than those that are expressly stated in the License."
|
16 |
+
]
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"# Intel® Geti™ deployment demo notebook\n",
|
20 |
+
"This notebook demonstrates how to run inference for a deployed Intel® Geti™ project on your local machine. It contains the following steps:\n",
|
21 |
+
"1. Load the deployment for the project from the exported `deployment` folder\n",
|
22 |
+
"2. Load a sample image to run inference on\n",
|
23 |
+
"3. Prepare the deployment for inference by sending the model (or models) for the project to the CPU\n",
|
24 |
+
"4. Infer image\n",
|
25 |
+
"5. Visualize prediction"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"id": "a0ee561b-49fb-4f8b-9c7f-e4859e3fe99e",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"### Step 1: Load the deployment"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "d04d3e58-8cae-4491-86b6-fbc876fd5e4f",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"from geti_sdk.deployment import Deployment\n",
|
44 |
+
"\n",
|
45 |
+
"deployment = Deployment.from_folder(\"../deployment\")"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "markdown",
|
50 |
+
"id": "713de7c8-0ac4-4865-b947-98ecbc4173fb",
|
51 |
+
"metadata": {},
|
52 |
+
"source": [
|
53 |
+
"### Step 2: Load the sample image"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"id": "5c61e01f-2c88-4f0d-ae18-88610cc13bf2",
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"import cv2\n",
|
64 |
+
"\n",
|
65 |
+
"image = cv2.imread(\"../sample_image.jpg\")\n",
|
66 |
+
"image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "markdown",
|
71 |
+
"id": "40da9013-46f7-488d-972d-5ceddd54a60c",
|
72 |
+
"metadata": {},
|
73 |
+
"source": [
|
74 |
+
"### Step 3: Send inference model(s) to CPU"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"id": "f6b80e6f-57fa-421a-b71f-ffbd0847c0a9",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"deployment.load_inference_models(device='CPU')"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "markdown",
|
89 |
+
"id": "6f539adc-04e7-43b4-b113-99e7ff7f6482",
|
90 |
+
"metadata": {},
|
91 |
+
"source": [
|
92 |
+
"### Step 4: Infer image"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"id": "a0e72d41-ec75-4bfe-859b-7302463b9fb6",
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"prediction = deployment.infer(image_rgb)"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"id": "5f450bb5-29dc-4ac4-b5bb-4b02f350aacc",
|
108 |
+
"metadata": {},
|
109 |
+
"source": [
|
110 |
+
"### Step 5: Visualization"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": null,
|
116 |
+
"id": "db0dd922-36aa-4203-bc02-76c17d12d8be",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"from geti_sdk.utils import show_image_with_annotation_scene\n",
|
121 |
+
"\n",
|
122 |
+
"show_image_with_annotation_scene(image_rgb, prediction, show_in_notebook=True)"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"id": "a342324f-3177-4d61-bee4-40b47d0f78f8",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": []
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"metadata": {
|
135 |
+
"celltoolbar": "Edit Metadata",
|
136 |
+
"kernelspec": {
|
137 |
+
"display_name": "Python 3 (ipykernel)",
|
138 |
+
"language": "python",
|
139 |
+
"name": "python3"
|
140 |
+
},
|
141 |
+
"language_info": {
|
142 |
+
"codemirror_mode": {
|
143 |
+
"name": "ipython",
|
144 |
+
"version": 3
|
145 |
+
},
|
146 |
+
"file_extension": ".py",
|
147 |
+
"mimetype": "text/x-python",
|
148 |
+
"name": "python",
|
149 |
+
"nbconvert_exporter": "python",
|
150 |
+
"pygments_lexer": "ipython3",
|
151 |
+
"version": "3.8.10"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"nbformat": 4,
|
155 |
+
"nbformat_minor": 5
|
156 |
+
}
|
deployments/example_code/demo_ovms.ipynb
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"copyright": [
|
7 |
+
"INTEL CONFIDENTIAL",
|
8 |
+
"Copyright (C) 2023 Intel Corporation",
|
9 |
+
"This software and the related documents are Intel copyrighted materials, and your use of them is governed by",
|
10 |
+
"the express license under which they were provided to you (\"License\"). Unless the License provides otherwise,",
|
11 |
+
"you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents",
|
12 |
+
"without Intel's prior written permission.",
|
13 |
+
"This software and the related documents are provided as is, with no express or implied warranties,",
|
14 |
+
"other than those that are expressly stated in the License."
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"# Serving Intel® Geti™ models with OpenVINO Model Server\n",
|
19 |
+
"This notebook shows how to set up an OpenVINO model server to serve the models trained\n",
|
20 |
+
"in your Intel® Geti™ project. It also shows how to use the Geti SDK as a client to\n",
|
21 |
+
"make inference requests to the model server.\n",
|
22 |
+
"\n",
|
23 |
+
"# Contents\n",
|
24 |
+
"\n",
|
25 |
+
"1. **OpenVINO Model Server**\n",
|
26 |
+
" 1. Requirements\n",
|
27 |
+
" 2. Generating the model server configuration\n",
|
28 |
+
" 3. Launching the model server\n",
|
29 |
+
"\n",
|
30 |
+
"2. **OVMS inference with Geti SDK**\n",
|
31 |
+
" 1. Loading inference model and sample image\n",
|
32 |
+
" 2. Requesting inference\n",
|
33 |
+
" 3. Inspecting the results\n",
|
34 |
+
"\n",
|
35 |
+
"3. **Conclusion**\n",
|
36 |
+
" 1. Cleaning up\n",
|
37 |
+
"\n",
|
38 |
+
"> **NOTE**: This notebook will set up a model server on the same machine that will be\n",
|
39 |
+
"> used as a client to request inference. In a real scenario you'd most likely\n",
|
40 |
+
"> want the server and the client to be different physical machines. The steps to set up\n",
|
41 |
+
"> OVMS on a remote server are the same as for the local server outlined in this\n",
|
42 |
+
"> notebook, but additional network configuration and security measures are most likely\n",
|
43 |
+
"> required.\n",
|
44 |
+
"\n",
|
45 |
+
"# OpenVINO Model Server\n",
|
46 |
+
"## Requirements\n",
|
47 |
+
"We will be running the OpenVINO Model Server (OVMS) with Docker. Please make sure you\n",
|
48 |
+
"have docker available on your system. You can install it by following the instructions\n",
|
49 |
+
"[here](https://docs.docker.com/get-docker/).\n",
|
50 |
+
"\n",
|
51 |
+
"## Generating the model server configuration\n",
|
52 |
+
"The `deployment` that was downloaded from the Intel® Geti™ platform can be used to create\n",
|
53 |
+
"the configuration files that are needed to set up an OpenVINO model server for your project.\n",
|
54 |
+
"\n",
|
55 |
+
"The cell below shows how to create the configuration. Running this cell should create\n",
|
56 |
+
"a folder called `ovms_models` in a temporary directory. The `ovms_models` folder\n",
|
57 |
+
"contains the models and the configuration files required to run OVMS for the Intel®\n",
|
58 |
+
"Geti™ project."
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"metadata": {
|
65 |
+
"collapsed": false,
|
66 |
+
"jupyter": {
|
67 |
+
"outputs_hidden": false
|
68 |
+
},
|
69 |
+
"pycharm": {
|
70 |
+
"name": "#%%\n"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"import os\n",
|
76 |
+
"import tempfile\n",
|
77 |
+
"\n",
|
78 |
+
"from geti_sdk.deployment import Deployment\n",
|
79 |
+
"\n",
|
80 |
+
"deployment_path = os.path.join(\"..\", \"deployment\")\n",
|
81 |
+
"\n",
|
82 |
+
"# Load the Geti deployment\n",
|
83 |
+
"deployment = Deployment.from_folder(deployment_path)\n",
|
84 |
+
"\n",
|
85 |
+
"# Creating the OVMS configuration for the deployment\n",
|
86 |
+
"# First, we'll create a temporary directory to store the config files\n",
|
87 |
+
"ovms_config_path = os.path.join(tempfile.mkdtemp(), \"ovms_models\")\n",
|
88 |
+
"\n",
|
89 |
+
"# Next, we generate the OVMS configuration and save it\n",
|
90 |
+
"deployment.generate_ovms_config(output_folder=ovms_config_path)\n",
|
91 |
+
"\n",
|
92 |
+
"print(f\"Configuration for OpenVINO Model Server was created at '{ovms_config_path}'\")"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "markdown",
|
97 |
+
"metadata": {
|
98 |
+
"pycharm": {
|
99 |
+
"name": "#%% md\n"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"source": [
|
103 |
+
"## Launching the model server\n",
|
104 |
+
"As mentioned before, we will run OVMS in a Docker container. First, we need to make sure\n",
|
105 |
+
"that we have the latest OVMS image on our system. Run the cell below to pull the image."
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"metadata": {
|
112 |
+
"collapsed": false,
|
113 |
+
"jupyter": {
|
114 |
+
"outputs_hidden": false
|
115 |
+
},
|
116 |
+
"pycharm": {
|
117 |
+
"name": "#%%\n"
|
118 |
+
}
|
119 |
+
},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"! docker pull openvino/model_server:latest"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "markdown",
|
127 |
+
"metadata": {
|
128 |
+
"pycharm": {
|
129 |
+
"name": "#%% md\n"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"source": [
|
133 |
+
"Next, we have to start the container with the configuration that we just generated. This\n",
|
134 |
+
"is done in the cell below.\n",
|
135 |
+
"\n",
|
136 |
+
"> NOTE: The cell below starts the OVMS container and sets it up to listen for inference\n",
|
137 |
+
"> requests on port 9000 on your system. If this port is already occupied the `docker run`\n",
|
138 |
+
"> command will fail and you may need to try a different port number."
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {
|
145 |
+
"collapsed": false,
|
146 |
+
"jupyter": {
|
147 |
+
"outputs_hidden": false
|
148 |
+
},
|
149 |
+
"pycharm": {
|
150 |
+
"name": "#%%\n"
|
151 |
+
}
|
152 |
+
},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# Launch the OVMS container\n",
|
156 |
+
"result = ! docker run -d --rm -v {ovms_config_path}:/models -p 9000:9000 --name ovms_demo openvino/model_server:latest --port 9000 --config_path /models/ovms_model_config.json\n",
|
157 |
+
"\n",
|
158 |
+
"# Check that the container was created successfully\n",
|
159 |
+
"if len(result) == 1:\n",
|
160 |
+
" container_id = result[0]\n",
|
161 |
+
" print(f\"OVMS container with ID '{container_id}' created.\")\n",
|
162 |
+
"else:\n",
|
163 |
+
" # Anything other than 1 result indicates that something went wrong\n",
|
164 |
+
" raise RuntimeError(result)\n",
|
165 |
+
"\n",
|
166 |
+
"# Check that the container is running properly\n",
|
167 |
+
"container_info = ! docker container inspect {container_id}\n",
|
168 |
+
"container_status = str(container_info.grep(\"Status\"))\n",
|
169 |
+
"\n",
|
170 |
+
"if not container_status or not \"running\" in container_status:\n",
|
171 |
+
" raise RuntimeError(\n",
|
172 |
+
" f\"Invalid ovms docker container status found: {container_status}. Most \"\n",
|
173 |
+
" f\"likely the container has not started properly.\"\n",
|
174 |
+
" )\n",
|
175 |
+
"print(\"OVMS container is up and running.\")"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"metadata": {
|
181 |
+
"pycharm": {
|
182 |
+
"name": "#%% md\n"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
"source": [
|
186 |
+
"That's it! If all went well the cell above should print the ID of the container that\n",
|
187 |
+
"was created. This can be used to identify your container if you have a lot of docker\n",
|
188 |
+
"containers running on your system.\n",
|
189 |
+
"\n",
|
190 |
+
"# OVMS inference with Geti SDK\n",
|
191 |
+
"Now that the OVMS container is running, we can use the Geti SDK to talk to it and make an\n",
|
192 |
+
"inference request. The remaining part of this notebook shows how to do so.\n",
|
193 |
+
"\n",
|
194 |
+
"## Loading inference model and sample image\n",
|
195 |
+
"In the first part of this notebook we created configuration files for OVMS, using the\n",
|
196 |
+
"`deployment` that was generated for your Intel® Geti™ project. To do inference, we need\n",
|
197 |
+
"to connect the deployment to the OVMS container that is now running. This is done in the\n",
|
198 |
+
"cell below."
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": null,
|
204 |
+
"metadata": {
|
205 |
+
"collapsed": false,
|
206 |
+
"jupyter": {
|
207 |
+
"outputs_hidden": false
|
208 |
+
},
|
209 |
+
"pycharm": {
|
210 |
+
"name": "#%%\n"
|
211 |
+
}
|
212 |
+
},
|
213 |
+
"outputs": [],
|
214 |
+
"source": [
|
215 |
+
"# Load the inference models by connecting to OVMS on port 9000\n",
|
216 |
+
"deployment.load_inference_models(device=\"http://localhost:9000\")\n",
|
217 |
+
"\n",
|
218 |
+
"print(\"Connected to OpenVINO Model Server.\")"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "markdown",
|
223 |
+
"metadata": {
|
224 |
+
"pycharm": {
|
225 |
+
"name": "#%% md\n"
|
226 |
+
}
|
227 |
+
},
|
228 |
+
"source": [
|
229 |
+
"You should see some output indicating that the connection to OVMS was made successfully.\n",
|
230 |
+
"If you see any errors at this stage, make sure your OVMS container is running and that the\n",
|
231 |
+
"port number is correct.\n",
|
232 |
+
"\n",
|
233 |
+
"Next up, we'll load a sample image from the project to run inference on"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": null,
|
239 |
+
"metadata": {
|
240 |
+
"collapsed": false,
|
241 |
+
"jupyter": {
|
242 |
+
"outputs_hidden": false
|
243 |
+
},
|
244 |
+
"pycharm": {
|
245 |
+
"name": "#%%\n"
|
246 |
+
}
|
247 |
+
},
|
248 |
+
"outputs": [],
|
249 |
+
"source": [
|
250 |
+
"import cv2\n",
|
251 |
+
"\n",
|
252 |
+
"# Load the sample image\n",
|
253 |
+
"image = cv2.imread(\"../sample_image.jpg\")\n",
|
254 |
+
"image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
255 |
+
"\n",
|
256 |
+
"# Show the image in the notebook\n",
|
257 |
+
"from IPython.display import display\n",
|
258 |
+
"from PIL import Image\n",
|
259 |
+
"\n",
|
260 |
+
"display(Image.fromarray(image_rgb))"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "markdown",
|
265 |
+
"metadata": {
|
266 |
+
"pycharm": {
|
267 |
+
"name": "#%% md\n"
|
268 |
+
}
|
269 |
+
},
|
270 |
+
"source": [
|
271 |
+
"## Requesting inference\n",
|
272 |
+
"Now that everything is set up, making an inference request is very simple:"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {
|
279 |
+
"collapsed": false,
|
280 |
+
"jupyter": {
|
281 |
+
"outputs_hidden": false
|
282 |
+
},
|
283 |
+
"pycharm": {
|
284 |
+
"name": "#%%\n"
|
285 |
+
}
|
286 |
+
},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"import time\n",
|
290 |
+
"\n",
|
291 |
+
"t_start = time.time()\n",
|
292 |
+
"prediction = deployment.infer(image_rgb)\n",
|
293 |
+
"t_end = time.time()\n",
|
294 |
+
"\n",
|
295 |
+
"print(\n",
|
296 |
+
" f\"OVMS inference on sample image completed in {(t_end - t_start) * 1000:.1f} milliseconds.\"\n",
|
297 |
+
")"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "markdown",
|
302 |
+
"metadata": {
|
303 |
+
"pycharm": {
|
304 |
+
"name": "#%% md\n"
|
305 |
+
}
|
306 |
+
},
|
307 |
+
"source": [
|
308 |
+
"## Inspecting the results\n",
|
309 |
+
"Note that the code to request inference is exactly the same as for the case when the model\n",
|
310 |
+
"is loaded on the CPU (see `demo_notebook.ipynb`). Like The `prediction` can be shown using\n",
|
311 |
+
"the Geti SDK visualization utility function."
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": null,
|
317 |
+
"metadata": {
|
318 |
+
"collapsed": false,
|
319 |
+
"jupyter": {
|
320 |
+
"outputs_hidden": false
|
321 |
+
},
|
322 |
+
"pycharm": {
|
323 |
+
"name": "#%%\n"
|
324 |
+
}
|
325 |
+
},
|
326 |
+
"outputs": [],
|
327 |
+
"source": [
|
328 |
+
"from geti_sdk.utils import show_image_with_annotation_scene\n",
|
329 |
+
"\n",
|
330 |
+
"show_image_with_annotation_scene(image_rgb, prediction, show_in_notebook=True);"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "markdown",
|
335 |
+
"metadata": {
|
336 |
+
"jupyter": {
|
337 |
+
"outputs_hidden": false
|
338 |
+
},
|
339 |
+
"pycharm": {
|
340 |
+
"name": "#%% md\n"
|
341 |
+
}
|
342 |
+
},
|
343 |
+
"source": [
|
344 |
+
"# Conclusion\n",
|
345 |
+
"That's all there is to it! Of course in practice the client would request inference\n",
|
346 |
+
"from an OpenVINO model server on a different physical machine, in contrast to the\n",
|
347 |
+
"example here where client and server are running on the same machine.\n",
|
348 |
+
"\n",
|
349 |
+
"The steps outlined in this notebook can be used as a basis to set up a remote\n",
|
350 |
+
"client/server combination, but please note that additional network configuration will\n",
|
351 |
+
"be required (along with necessary security measures).\n",
|
352 |
+
"\n",
|
353 |
+
"## Cleaning up\n",
|
354 |
+
"To clean up, we'll stop the OVMS docker container that we started. This will\n",
|
355 |
+
"automatically remove the container. After that, we'll delete the temporary directory\n",
|
356 |
+
"we created to store the config files."
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"execution_count": null,
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [],
|
364 |
+
"source": [
|
365 |
+
"# Stop the container\n",
|
366 |
+
"result = ! docker stop {container_id}\n",
|
367 |
+
"\n",
|
368 |
+
"# Check if removing the container worked correctly\n",
|
369 |
+
"if result[0] == container_id:\n",
|
370 |
+
" print(f\"OVMS container '{container_id}' stopped and removed successfully.\")\n",
|
371 |
+
"else:\n",
|
372 |
+
" print(\n",
|
373 |
+
" \"An error occurred while removing OVMS docker container. Most likely the container \"\n",
|
374 |
+
" \"was already removed. \"\n",
|
375 |
+
" )\n",
|
376 |
+
" print(f\"The docker daemon responded with the following error: \\n{result}\")\n",
|
377 |
+
" \n",
|
378 |
+
"# Remove the temporary directory with the OVMS configuration\n",
|
379 |
+
"import shutil\n",
|
380 |
+
"\n",
|
381 |
+
"temp_dir = os.path.dirname(ovms_config_path)\n",
|
382 |
+
"try:\n",
|
383 |
+
" shutil.rmtree(temp_dir)\n",
|
384 |
+
" print(\"Temporary configuration directory removed successfully.\")\n",
|
385 |
+
"except FileNotFoundError:\n",
|
386 |
+
" print(\n",
|
387 |
+
" f\"Temporary directory with OVMS configuration '{temp_dir}' was \"\n",
|
388 |
+
" f\"not found on the system. Most likely it is already removed.\"\n",
|
389 |
+
" )"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"cell_type": "code",
|
394 |
+
"execution_count": null,
|
395 |
+
"metadata": {},
|
396 |
+
"outputs": [],
|
397 |
+
"source": []
|
398 |
+
}
|
399 |
+
],
|
400 |
+
"metadata": {
|
401 |
+
"kernelspec": {
|
402 |
+
"display_name": "Python 3 (ipykernel)",
|
403 |
+
"language": "python",
|
404 |
+
"name": "python3"
|
405 |
+
},
|
406 |
+
"language_info": {
|
407 |
+
"codemirror_mode": {
|
408 |
+
"name": "ipython",
|
409 |
+
"version": 3
|
410 |
+
},
|
411 |
+
"file_extension": ".py",
|
412 |
+
"mimetype": "text/x-python",
|
413 |
+
"name": "python",
|
414 |
+
"nbconvert_exporter": "python",
|
415 |
+
"pygments_lexer": "ipython3",
|
416 |
+
"version": "3.8.16"
|
417 |
+
}
|
418 |
+
},
|
419 |
+
"nbformat": 4,
|
420 |
+
"nbformat_minor": 4
|
421 |
+
}
|
deployments/example_code/requirements-notebook.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requirements for running the `demo_notebook.ipynb` and `demo_ovms.ipynb` Jupyter notebooks
|
2 |
+
geti-sdk==2.6.*
|
3 |
+
jupyterlab>=3.6
|
4 |
+
opencv-python>=4.10
|
5 |
+
Pillow>=9.4.0
|
6 |
+
ipython>=8.10.0
|
deployments/example_code/requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Base requirements for the deployment
|
2 |
+
geti-sdk==2.6.*
|
3 |
+
opencv-python>=4.10
|
deployments/sample_image.jpg
ADDED
![]() |
Git LFS Details
|