Spaces:
Running
Running
File size: 12,213 Bytes
c949917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import os
import csv
import streamlit as st
import polars as pl
from io import BytesIO, StringIO
from gliner import GLiNER
from gliner_file import run_ner
import time
import torch
import platform
from typing import List
from streamlit_tags import st_tags # Importing the st_tags component
# Streamlit page configuration
st.set_page_config(
page_title="GLiNER",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to load data from the uploaded file
@st.cache_data
def load_data(file):
"""
Loads an uploaded CSV or Excel file with resilient detection of delimiters and types.
"""
with st.spinner("Loading data, please wait..."):
try:
_, file_ext = os.path.splitext(file.name)
if file_ext.lower() in [".xls", ".xlsx"]:
return load_excel(file)
elif file_ext.lower() == ".csv":
return load_csv(file)
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
except Exception as e:
st.error("Error loading data:")
st.error(str(e))
return None
def load_excel(file):
"""
Loads an Excel file using `BytesIO` and `polars` for reduced latency.
"""
try:
# Load the file into BytesIO for faster reading
file_bytes = BytesIO(file.read())
# Load the Excel file using `polars`
df = pl.read_excel(file_bytes, read_options={"ignore_errors": True})
return df
except Exception as e:
raise ValueError(f"Error reading the Excel file: {str(e)}")
def load_csv(file):
"""
Loads a CSV file by detecting the delimiter and using the quote character to handle internal delimiters.
"""
try:
file.seek(0) # Reset file pointer to ensure reading from the beginning
raw_data = file.read()
# Try decoding as UTF-8, else as Latin-1
try:
file_content = raw_data.decode('utf-8')
except UnicodeDecodeError:
try:
file_content = raw_data.decode('latin1')
except UnicodeDecodeError:
raise ValueError("Unable to decode the file. Ensure it is encoded in UTF-8 or Latin-1.")
# List of common delimiters
delimiters = [",", ";", "|", "\t", " "]
# Try each delimiter until one works
for delimiter in delimiters:
try:
# Read CSV with current delimiter and handle quoted fields
df = pl.read_csv(
StringIO(file_content),
separator=delimiter,
quote_char='"', # Handle internal delimiters with quotes
try_parse_dates=True,
ignore_errors=True, # Ignore errors for invalid values
truncate_ragged_lines=True
)
# Return the DataFrame if loading succeeds
return df
except Exception:
continue # Move to the next delimiter in case of error
# If no delimiter worked
raise ValueError("Unable to load the file with common delimiters.")
except Exception as e:
raise ValueError(f"Error reading the CSV file: {str(e)}")
# Function to load the GLiNER model
@st.cache_resource
def load_model():
"""
Loads the GLiNER model into memory to avoid multiple reloads.
"""
try:
gpu_available = torch.cuda.is_available()
with st.spinner("Loading the GLiNER model... Please wait."):
device = torch.device("cuda" if gpu_available else "cpu")
model = GLiNER.from_pretrained(
"urchade/gliner_multi-v2.1"
).to(device)
model.eval()
if gpu_available:
device_name = torch.cuda.get_device_name(0)
st.success(f"GPU detected: {device_name}. Model loaded on GPU.")
else:
cpu_name = platform.processor()
st.warning(f"No GPU detected. Using CPU: {cpu_name}")
return model
except Exception as e:
st.error("Error loading the model:")
st.error(str(e))
return None
# Function to perform NER and update the user interface
def perform_ner(filtered_df, selected_column, labels_list, threshold):
"""
Executes named entity recognition (NER) on the filtered data.
"""
try:
texts_to_analyze = filtered_df[selected_column].to_list()
total_rows = len(texts_to_analyze)
ner_results_list = []
# Initialize progress bar and text
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time()
# Process each row individually to keep progress updates responsive
for index, text in enumerate(texts_to_analyze, 1):
if st.session_state.stop_processing:
progress_text.text("Processing stopped by user.")
break
ner_results = run_ner(
st.session_state.gliner_model,
[text],
labels_list,
threshold=threshold
)
ner_results_list.append(ner_results)
# Update progress bar and text after each row
progress = index / total_rows
elapsed_time = time.time() - start_time
progress_bar.progress(progress)
progress_text.text(f"Progress: {index}/{total_rows} - {progress * 100:.0f}% (Elapsed time: {elapsed_time:.2f}s)")
# Add NER results to the DataFrame
for label in labels_list:
extracted_entities = []
for entities in ner_results_list:
texts = [entity["text"] for entity in entities[0] if entity["label"] == label]
concatenated_texts = ", ".join(texts) if texts else ""
extracted_entities.append(concatenated_texts)
filtered_df = filtered_df.with_columns(pl.Series(name=label, values=extracted_entities))
end_time = time.time()
st.success(f"Processing completed in {end_time - start_time:.2f} seconds.")
return filtered_df
except Exception as e:
st.error(f"Error during NER processing: {str(e)}")
return filtered_df
# Main function to run the Streamlit application
def main():
st.title("Use NER with GliNER on your data file")
st.markdown("Prototype v0.1")
# User instructions
st.write("""
This application performs named entity recognition (NER) on your text data using GLiNER.
**Instructions:**
1. Upload a CSV or Excel file.
2. Select the column containing the text to analyze.
3. Filter the data if necessary.
4. Enter the NER labels you wish to detect.
5. Click "Start NER" to begin processing.
""")
# Initializing session state variables
if "stop_processing" not in st.session_state:
st.session_state.stop_processing = False
if "threshold" not in st.session_state:
st.session_state.threshold = 0.4
if "labels_list" not in st.session_state:
st.session_state.labels_list = []
# Load the model
st.session_state.gliner_model = load_model()
if st.session_state.gliner_model is None:
return
# File upload
uploaded_file = st.sidebar.file_uploader("Choose a file (CSV or Excel)")
if uploaded_file is None:
st.warning("Please upload a file to continue.")
return
# Loading data
df = load_data(uploaded_file)
if df is None:
return
# Column selection
selected_column = st.selectbox("Select the column containing the text:", df.columns)
# Data filtering
filter_text = st.text_input("Filter the column by text", "")
if filter_text:
filtered_df = df.filter(pl.col(selected_column).str.contains(f"(?i).*{filter_text}.*"))
else:
filtered_df = df
st.write("Filtered data preview:")
# Rows per page
rows_per_page = 100
# Calculate total rows and pages
total_rows = len(filtered_df)
total_pages = (total_rows - 1) // rows_per_page + 1
# Initialize current page in session_state
if "current_page" not in st.session_state:
st.session_state.current_page = 1
# Function to update page
def update_page(new_page):
st.session_state.current_page = new_page
# Pagination buttons
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
first = st.button("⏮️ First")
with col2:
previous = st.button("⬅️ Previous")
with col3:
pass # Page number display will be done after
with col4:
next = st.button("Next ➡️")
with col5:
last = st.button("Last ⏭️")
# Button clicks management
if first:
update_page(1)
elif previous:
if st.session_state.current_page > 1:
update_page(st.session_state.current_page - 1)
elif next:
if st.session_state.current_page < total_pages:
update_page(st.session_state.current_page + 1)
elif last:
update_page(total_pages)
# Now display the page number after updating
with col3:
st.markdown(f"Page **{st.session_state.current_page}** of **{total_pages}**")
# Calculate indices for pagination
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
# Check if the filtered DataFrame is empty
if not filtered_df.is_empty():
# Retrieve current page data
current_page_data = filtered_df.slice(start_idx, end_idx - start_idx)
st.write(f"Displaying {start_idx + 1} to {end_idx} of {total_rows} rows")
st.dataframe(current_page_data.to_pandas(), use_container_width=True)
else:
st.warning("The filtered DataFrame is empty. Please check your filters.")
# Confidence threshold slider
st.slider("Set confidence threshold", 0.0, 1.0, st.session_state.threshold, 0.01, key="threshold")
# Buttons to start and stop NER
col1, col2 = st.columns(2)
with col1:
start_button = st.button("Start NER")
with col2:
stop_button = st.button("Stop")
if start_button:
st.session_state.stop_processing = False
if not st.session_state.labels_list:
st.warning("Please enter labels for NER.")
else:
# Run NER
updated_df = perform_ner(filtered_df, selected_column, st.session_state.labels_list, st.session_state.threshold)
st.write("**NER Results:**")
st.dataframe(updated_df.to_pandas(), use_container_width=True)
# Function to convert DataFrame to Excel
def to_excel(df):
output = BytesIO()
df.write_excel(output)
return output.getvalue()
# Function to convert DataFrame to CSV
def to_csv(df):
return df.write_csv().encode('utf-8')
# Download buttons for results
download_col1, download_col2 = st.columns(2)
with download_col1:
st.download_button(
label="📥 Download as Excel",
data=to_excel(updated_df),
file_name="ner_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
with download_col2:
st.download_button(
label="📥 Download as CSV",
data=to_csv(updated_df),
file_name="ner_results.csv",
mime="text/csv",
)
if stop_button:
st.session_state.stop_processing = True
st.warning("Processing stopped by user.")
if __name__ == "__main__":
main()
|