File size: 1,907 Bytes
690ada3
 
 
42b03f9
92249fa
690ada3
 
3a834c5
 
 
 
 
dc979d2
 
20347ea
 
 
48e5876
d962e6c
 
48e5876
 
20347ea
 
690ada3
9f64b92
d962e6c
690ada3
92249fa
d962e6c
 
 
 
 
 
27b7cb5
690ada3
 
 
 
 
039c558
690ada3
 
 
039c558
690ada3
 
 
535b225
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from skimage.metrics import structural_similarity as ssim
import gradio as gr
import cv2
import os

# Function to calculate SSIM between two images
def calculate_similarity(img1, img2):
    if len(img1.shape) == 2:
        img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2RGB)
    if len(img2.shape) == 2:
        img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
    return ssim(img1, img2, win_size=3)

# Function to compute similarity scores for all images
def compute_similarity(target_image, image_list):
    scores = []
    target_image_resized = cv2.resize(target_image, (target_image.shape[1], target_image.shape[0]))
    for image_path in image_list:
        image = cv2.imread(image_path)
        image_resized = cv2.resize(image, (target_image.shape[1], target_image.shape[0]))
        similarity_score = calculate_similarity(target_image_resized, image_resized)
        scores.append(similarity_score)
    return scores

# Function to handle the Gradio interface
def image_similarity(target_image, image_folder):
    target_image = target_image.astype(np.uint8)
    image_paths = [os.path.join(image_folder, file) for file in os.listdir(image_folder) if os.path.isfile(os.path.join(image_folder, file))]
    scores = compute_similarity(target_image, image_paths)
    results = []
    for image_path, score in zip(image_paths, scores):
        result = f"Image: {image_path}\nScore: {score:.4f}\n"
        results.append(result)
    return "".join(results)

# Prepare Gradio interface
iface = gr.Interface(
    fn=image_similarity,
    inputs=[
        gr.inputs.Image(type="numpy", label="Target Image"),
        gr.inputs.Textbox(label="Image Folder", lines=1)
    ],
    outputs="text",
    title="Image Similarity Calculator",
    description="Upload a target image and specify the path to the folder containing images. Get similarity scores."
)

# Launch the interface
iface.launch()