File size: 1,639 Bytes
690ada3
5ff8278
690ada3
42b03f9
690ada3
befd8b5
3a834c5
 
 
 
 
e20a8b4
 
 
 
befd8b5
 
 
 
 
 
 
 
 
 
 
dc979d2
befd8b5
90d7188
 
 
 
 
 
27b7cb5
690ada3
 
 
90d7188
 
690ada3
 
 
90d7188
690ada3
 
77a3aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from skimage.metrics import structural_similarity as ssim
import gradio as gr
import cv2

# Function to calculate SSIM between two images
def calculate_similarity(img1, img2):
    if len(img1.shape) == 2:
        img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2RGB)
    if len(img2.shape) == 2:
        img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
    max_height = max(img1.shape[0], img2.shape[0])
    max_width = max(img1.shape[1], img2.shape[1])
    img1_resized = cv2.resize(img1, (max_width, max_height))
    img2_resized = cv2.resize(img2, (max_width, max_height))
    
    # Calculate similarity score based on SSIM
    ssim_score = ssim(img1_resized, img2_resized, win_size=3, multichannel=True)
    
    # Additional score calculation after text removal (modify this as per your requirement)
    text_removed_score = 0.75  # Placeholder value, replace with your own calculation
    
    # Combine the scores or choose the desired score
    combined_score = (ssim_score + text_removed_score) / 2
    
    return combined_score

# Rest of the code remains the same
def image_similarity(img1, img2):
    img1 = img1.astype(np.uint8)
    img2 = img2.astype(np.uint8)
    similarity_score = calculate_similarity(img1, img2)
    result = f"Similarity Score: {similarity_score:.4f}"
    return result

iface = gr.Interface(
    fn=image_similarity,
    inputs=[
        gr.inputs.Image(type="numpy", label="Image 1"),
        gr.inputs.Image(type="numpy", label="Image 2")
    ],
    outputs="text",
    title="Image Similarity Calculator",
    description="Upload two images to compute their similarity."
)

iface.launch()